Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bridie J. M. Allan is active.

Publication


Featured researches published by Bridie J. M. Allan.


Biology Letters | 2012

Elevated carbon dioxide affects behavioural lateralization in a coral reef fish

Paolo Domenici; Bridie J. M. Allan; Mark I. McCormick; Philip L. Munday

Elevated carbon dioxide (CO2) has recently been shown to affect chemosensory and auditory behaviour, and activity levels of larval reef fishes, increasing their risk of predation. However, the mechanisms underlying these changes are unknown. Behavioural lateralization is an expression of brain functional asymmetries, and thus provides a unique test of the hypothesis that elevated CO2 affects brain function in larval fishes. We tested the effect of near-future CO2 concentrations (880 µatm) on behavioural lateralization in the reef fish, Neopomacentrus azysron. Individuals exposed to current-day or elevated CO2 were observed in a detour test where they made repeated decisions about turning left or right. No preference for right or left turns was observed at the population level. However, individual control fish turned either left or right with greater frequency than expected by chance. Exposure to elevated-CO2 disrupted individual lateralization, with values that were not different from a random expectation. These results provide compelling evidence that elevated CO2 directly affects brain function in larval fishes. Given that lateralization enhances performance in a number of cognitive tasks and anti-predator behaviours, it is possible that a loss of lateralization could increase the vulnerability of larval fishes to predation in a future high-CO2 ocean.


Proceedings of the Royal Society of London B: Biological Sciences | 2014

Parental effects improve escape performance of juvenile reef fish in a high-CO2 world

Bridie J. M. Allan; Gabrielle M. Miller; Mark I. McCormick; Paolo Domenici; Philip L. Munday

Rising CO2 levels in the oceans are predicted to have serious consequences for many marine taxa. Recent studies suggest that non-genetic parental effects may reduce the impact of high CO2 on the growth, survival and routine metabolic rate of marine fishes, but whether the parental environment mitigates behavioural and sensory impairment associated with high CO2 remains unknown. Here, we tested the acute effects of elevated CO2 on the escape responses of juvenile fish and whether such effects were altered by exposure of parents to increased CO2 (transgenerational acclimation). Elevated CO2 negatively affected the reactivity and locomotor performance of juvenile fish, but parental exposure to high CO2 reduced the effects in some traits, indicating the potential for acclimation of behavioural impairment across generations. However, acclimation was not complete in some traits, and absent in others, suggesting that transgenerational acclimation does not completely compensate the effects of high CO2 on escape responses.


PLOS ONE | 2013

Elevated CO2 Affects Predator-Prey Interactions through Altered Performance

Bridie J. M. Allan; Paolo Domenici; Mark I. McCormick; Sue-Ann Watson; Philip L. Munday

Recent research has shown that exposure to elevated carbon dioxide (CO2) affects how fishes perceive their environment, affecting behavioral and cognitive processes leading to increased prey mortality. However, it is unclear if increased mortality results from changes in the dynamics of predator-prey interactions or due to prey increasing activity levels. Here we demonstrate that ocean pCO2 projected to occur by 2100 significantly effects the interactions of a predator-prey pair of common reef fish: the planktivorous damselfish Pomacentrus amboinensis and the piscivorous dottyback Pseudochromis fuscus. Prey exposed to elevated CO2 (880 µatm) or a present-day control (440 µatm) interacted with similarly exposed predators in a cross-factored design. Predators had the lowest capture success when exposed to elevated CO2 and interacting with prey exposed to present-day CO2. Prey exposed to elevated CO2 had reduced escape distances and longer reaction distances compared to prey exposed to present-day CO2 conditions, but this was dependent on whether the prey was paired with a CO2 exposed predator or not. This suggests that the dynamics of predator-prey interactions under future CO2 environments will depend on the extent to which the interacting species are affected and can adapt to the adverse effects of elevated CO2.


Global Change Biology | 2015

Interactive effects of ocean acidification and rising sea temperatures alter predation rate and predator selectivity in reef fish communities

Maud C. O. Ferrari; Philip L. Munday; Jodie L. Rummer; Mark I. McCormick; Katherine Corkill; Sue-Ann Watson; Bridie J. M. Allan; Mark G. Meekan; Douglas P. Chivers

Ocean warming and acidification are serious threats to marine life. While each stressor alone has been studied in detail, their combined effects on the outcome of ecological interactions are poorly understood. We measured predation rates and predator selectivity of two closely related species of damselfish exposed to a predatory dottyback. We found temperature and CO2 interacted synergistically on overall predation rate, but antagonistically on predator selectivity. Notably, elevated CO2 or temperature alone reversed predator selectivity, but the interaction between the two stressors cancelled selectivity. Routine metabolic rates of the two prey showed strong species differences in tolerance to CO2 and not temperature, but these differences did not correlate with recorded mortality. This highlights the difficulty of linking species-level physiological tolerance to resulting ecological outcomes. This study is the first to document both synergistic and antagonistic effects of elevated CO2 and temperature on a crucial ecological process like predator-prey dynamics.


Scientific Reports | 2015

Living in a risky world: the onset and ontogeny of an integrated antipredator phenotype in a coral reef fish

Maud C. O. Ferrari; Mark I. McCormick; Bridie J. M. Allan; Rebecca Choi; Ryan A. Ramasamy; Jacob L. Johansen; Matthew D. Mitchell; Douglas P. Chivers

Prey individuals with complex life-histories often cannot predict the type of risk environment to which they will be exposed at each of their life stages. Because the level of investment in defences should match local risk conditions, we predict that these individuals should have the ability to modulate the expression of an integrated defensive phenotype, but this switch in expression should occur at key life-history transitions. We manipulated background level of risk in juvenile damselfish for four days following settlement (a key life-history transition) or 10 days post-settlement, and measured a suite of physiological and behavioural variables over 2 weeks. We found that settlement-stage fish exposed to high-risk conditions displayed behavioural and physiological alterations consistent with high-risk phenotypes, which gave them a survival advantage when exposed to predators. These changes were maintained for at least 2 weeks. The same exposure in post-settlement fish failed to elicit a change in some traits, while the expression of other traits disappeared within a week. Our results are consistent with those expected from phenotypic resonance. Expression of antipredator traits may be masked if individuals are not exposed to certain conditions at key ontogenetic stages.


Functional Ecology | 2015

The effects of background risk on behavioural lateralization in a coral reef fish

Maud C. O. Ferrari; Mark I. McCormick; Bridie J. M. Allan; Rebecca Choi; Ryan A. Ramasamy; Douglas P. Chivers

1. Behavioural lateralization - the preferential use of one side of the body or either of the bilateral organs or limbs - has been well documented in many species, in a number of contexts. While the benefits reported are numerous, existing latent variability in the degree of lateralization within and across populations, species and taxa indicates that existing costs may modulate its expression. 2. Few studies have reported changes in the degree of lateralization at the individual level, in response to long-term changes in environmental conditions, but not in response to short-term changes in environmental conditions. Predation is highly variable both temporally and spatially and hence is a good candidate for testing lateralization effects based on short- term changes in environmental conditions. 3. Here, we tested the hypothesis that the degree of behavioural lateralization changes following short-term exposure to different levels of risk. We tested whether wild-caught juvenile damselfish exposed to a high or low background level of risk for 4 days would subsequently differ in their turning bias, a trait that has been linked to predator escape behaviour in fishes. 4. We found that 4 days is enough to induce a difference in the absolute lateralization scores of the fish, with high-risk fish being more strongly lateralized than low-risk fish. Practically, this difference stemmed from decreasing lateralization scores for newly recruiting coral reef fishes that were kept in low-risk environments, with the concurrent maintenance of higher lateralization scores for fish maintained under high-risk conditions. Fish from the high-risk background had higher survival than those from the low- risk background upon release into mesocosms containing reef predators. 5. Our study highlights how early exposure to differential predation risk affects the degree of behavioural lateralization. Given the profound effects of lateralization on many aspects of an animals life from its ability to discriminate conspecifics to how it forages and interacts during agonistic interactions, predation risk may be a key driver of animal development.


Conservation Physiology | 2015

Feeling the heat: the effect of acute temperature changes on predator–prey interactions in coral reef fish

Bridie J. M. Allan; Paolo Domenici; Phillip L. Munday; Mark I. McCormick

Exposure to elevated temperatures significantly affects the predator-prey interactions of a common pair of reef fish. Predators exposed to elevated temperatures had increased maximum attack speeds. This coupled with decreasing prey escape speeds and distances led to increased predation rates with subsequent increases in capture success.


Proceedings of the Royal Society B: Biological Sciences | 2016

At odds with the group: changes in lateralization and escape performance reveal conformity and conflict in fish schools

Douglas P. Chivers; Mark I. McCormick; Bridie J. M. Allan; Matthew D. Mitchell; Emanuel João Gonçalves; Reid Bryshun; Maud C. O. Ferrari

Many vertebrates are known to show behavioural lateralization, whereby they differentially use one side of their body or either of their bilateral organs or limbs. Behavioural lateralization often manifests in a turning bias in fishes, with some individuals showing a left bias and others a right bias. Such biases could be the source of considerable conflict in fish schools given that there may be considerable social pressure to conform to the group to maintain effective group evasion. Here, we show that predation pressure is a major determinant of the degree of lateralization, both in a relative and absolute sense, in yellow-and-blueback fusiliers (Caesio teres), a schooling fish common on coral reefs. Wild-caught fish showed a bias for right turning. When predation pressure was experimentally elevated or relaxed, the strength of lateralization changed. Higher predation pressure resulted in an increase in the strength of lateralization. Individuals that exhibited the same turning bias as the majority of individuals in their group had improved escape performance compared with individuals that were at odds with the group. Moreover, individuals that were right-biased had improved escape performance, compared with left-biased ones. Plasticity in lateralization might be an important evolutionary consequence of the way gregarious species respond to predators owing to the probable costs associated with this behaviour.


PeerJ | 2016

Effects of elevated CO2 on predator avoidance behaviour by reef fishes is not altered by experimental test water

Philip L. Munday; Megan J. Welch; Bridie J. M. Allan; Sue-Ann Watson; Shannon J. McMahon; Mark I. McCormick

Pioneering studies into the effects of elevated CO2 on the behaviour of reef fishes often tested high-CO2 reared fish using control water in the test arena. While subsequent studies using rearing treatment water (control or high CO2) in the test arena have confirmed the effects of high CO2 on a range of reef fish behaviours, a further investigation into the use of different test water in the experimental arena is warranted. Here, we used a fully factorial design to test the effect of rearing treatment water (control or high CO2) and experimental test water (control or high CO2) on antipredator responses of larval reef fishes. We tested antipredator behaviour in larval clownfish Amphiprion percula and ambon damselfish Pomacentrus amboinensis, two species that have been used in previous high CO2 experiments. Specifically, we tested if: (1) using control or high CO2 water in a two channel flume influenced the response of larval clownfish to predator odour; and (2) using control or high CO2 water in the test arena influenced the escape response of larval damselfish to a startle stimulus. Finally, (3) because the effects of high CO2 on fish behaviour appear to be caused by altered function of the GABA-A neurotransmitter we tested if antipredator behaviours were restored in clownfish treated with a GABA antagonist (gabazine) in high CO2 water. Larval clownfish reared from hatching in control water (496 µatm) strongly avoided predator cue whereas larval clownfish reared from hatching in high CO2 (1,022 µatm) were attracted to the predator cue, as has been reported in previous studies. There was no effect on fish responses of using either control or high CO2 water in the flume. Larval damselfish reared for four days in high CO2 (1,051 µatm) exhibited a slower response to a startle stimulus and slower escape speed compared with fish reared in control conditions (464 µatm). There was no effect of test water on escape responses. Treatment of high-CO2 reared clownfish with 4 mg l−1 gabazine in high CO2 seawater restored the normal response to predator odour, as has been previously reported with fish tested in control water. Our results show that using control water in the experimental trials did not influence the results of previous studies on antipredator behaviour of reef fishes and also supports the results of novel experiments conducted in natural reef habitat at ambient CO2 levels.


PLOS ONE | 2015

Plasticity of Escape Responses: Prior Predator Experience Enhances Escape Performance in a Coral Reef Fish.

Ryan A. Ramasamy; Bridie J. M. Allan; Mark I. McCormick

Teleost and amphibian prey undertake fast-start escape responses during a predatory attack in an attempt to avoid being captured. Although previously viewed as a reflex reaction controlled by the autonomic nervous system, the escape responses of individuals when repeatedly startled are highly variable in their characteristics, suggesting some behavioural mediation of the response. Previous studies have shown that fishes are able to learn from past experiences, but few studies have assessed how past experience with predators affect the fast-start response. Here we determined whether prior experience with the smell or sight of a predator (the Dottyback, Pseudochromis fuscus) affected the escape response of juveniles of the Spiny Chromis (Acanthochromis polyacanthus). Results show that individuals exposed to any of the predator cues prior to being startled exhibited a stronger escape response (i.e., reduced latency, increased escape distance, mean response speed, maximum response speed and maximum acceleration) when compared with controls. This study demonstrates the plasticity of escape responses and highlights the potential for naïve reef fish to take into account both visual and olfactory threat cues simultaneously to optimise the amplitude of their kinematic responses to perceived risk.

Collaboration


Dive into the Bridie J. M. Allan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paolo Domenici

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge