Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brigitte Bisaro is active.

Publication


Featured researches published by Brigitte Bisaro.


Advances in Experimental Medicine and Biology | 2010

Integrins and Signal Transduction

Sara Cabodi; Paola Di Stefano; Maria del Pilar Camacho Leal; Agata Tinnirello; Brigitte Bisaro; Virginia Morello; Laura Damiano; Simona Aramu; Daniele Repetto; Giusy Tornillo; Paola Defilippi

Integrin signaling has a critical function in organizing cells in tissues during both embryonic development and tissue repair. Following their binding to the extracellular ligands, the intracellular signaling pathways triggered by integrins are directed to two major functions: organization of the actin cytoskeleton and regulation of cell behaviour including survival, differentiation and growth. Basic research conducted in the past twelve years has lead to remarkable breakthroughs in this field. Integrins are catalytically inactive and translate positional cues into biochemical signals by direct and/or functional association with intracellular adaptors, cytosolic tyrosine kinases or growth factor and cytokine receptors. The purpose of this chapter is to highlight recent experimental and conceptual advances in integrin signaling with particular emphasis on the ability of integrins to regulate Fak/Src family kinases (SFKs) activation and the cross-talk with soluble growth factors receptors and cytokines.


Journal of Neurochemistry | 2007

Inhibition of heat shock proteins (HSP) expression by quercetin and differential doxorubicin sensitization in neuroblastoma and Ewing's sarcoma cell lines

Cristina Zanini; Giuliana Giribaldi; Giorgia Mandili; Franco Carta; Nicoletta Crescenzio; Brigitte Bisaro; Alessandra Doria; Luiselda Foglia; Luca Cordero di Montezemolo; Fabio Timeus; Franco Turrini

Neuroblastoma (NB) and Ewing’s sarcoma (ES) represent the most common extracranial solid tumors of childhood. Heat shock proteins (HSP) are elevated in cancer cells and their over‐expression was correlated to drug‐resistance. In this work we identified the HSP by a sensitive proteomic analysis of NB and ES cell lines, then, we studied the HSP response to doxorubicin. Some identified HSP were constitutively more expressed in NB than in ES cells. Doxorubicin‐stimulated HSP response only in NB cells. Quercetin was found to inhibit HSP expression depleting heat shock factor 1 (HSF1) cellular stores. Quercetin caused a higher anti‐proliferative effect in NB (IC50: 6.9 ± 5.8 μmol/L) than in ES cells (IC50: 85.5 ± 53.1 μmol/L). Moreover, quercetin caused a very pronounced doxorubicin sensitizing effect in NB cells (241 fold IC50 decrease) and a moderate effect in ES cells. HSP involvement in NB cells sensitization was confirmed by the silencing of HSF1. Quercetin treatment and HSF1 silencing increased the pro‐apoptotic effect of doxorubicin. In conclusion, the higher HSP levels, observed in NB cells, did not confer increased resistance to doxorubicin; on the contrary, HSP inhibition by quercetin or gene silencing caused higher sensitization to doxorubicin. These results may have a potential application in the treatment of NB.


The FASEB Journal | 2010

p130Cas is an essential transducer element in ErbB2 transformation

Sara Cabodi; Agata Tinnirello; Brigitte Bisaro; Giusy Tornillo; Maria del Pilar Camacho-Leal; Guido Forni; Rodica Cojoca; Manuela Iezzi; Augusto Amici; Maura Montani; Alessandra Eva; Paola Di Stefano; Senthil K. Muthuswamy; Guido Tarone; Emilia Turco; Paola Defilippi

The ErbB2 oncogene is often overexpressed in breast tumors and associated with poor clinical outcome. p130Cas represents a nodal scaffold protein regulating cell survival, migration, and proliferation in normal and pathological cells. The functional role of p130Cas in ErbB2‐dependent breast tumorigenesis was assessed by its silencing in breast cancer cells derived from mouse mammary tumors overexpressing ErbB2 (N202‐1A cells), and by its reexpression in ErbB2‐transformed p130Cas‐null mouse embryonic fibroblasts. We demonstrate that p130Cas is necessary for ErbB2‐dependent foci formation, anchorage‐independent growth, and in vivo growth of orthotopic N202‐1A tumors. Moreover, intranipple injection of p130Cas‐stabilized siRNAs in the mammary gland of Balbc‐NeuT mice decreases the growth of spontaneous tumors. In ErbB2‐transformed cells, p130Cas is a crucial component of a functional molecular complex consisting of ErbB2, c‐Src, and Fak. In human mammary cells, MCF10A.B2, the concomitant activation of ErbB2, and p130Cas overexpression sustain and strengthen signaling, leading to Rac1 activation and MMP9 secretion, thus providing invasive properties. Consistently, p130Cas drives N202‐1A cell in vivo lung metastases colonization. These results demonstrate that p130Cas is an essential transducer in ErbB2 transformation and highlight its potential use as a novel therapeutic target in ErbB2 positive human breast cancers.—Cabodi, S., Tinnirello, A., Bisaro, B., Tornillo, G., Camacho‐Leal, M. P., Forni, G., Cojoca, R., Iezzi, M., Amici, A., Montani, M., Eva, A., Di Stefano, P., Muthuswamy, S. K., Tarone, G., Turco, E., Defilippi, P. p130Cas is an essential transducer element in ErbB2 transformation. FASEB J. 24, 3796–3808 (2010). www.fasebj.org


PLOS ONE | 2010

Mesenchymal/stromal gene expression signature relates to basal-like breast cancers, identifies bone metastasis and predicts resistance to therapies.

Cristina Marchini; Maura Montani; Georgia Konstantinidou; Rita Orrù; Silvia Mannucci; Giorgio Ramadori; Federico Gabrielli; Anna Baruzzi; Giorgio Berton; Flavia Merigo; Stefania Fin; Manuela Iezzi; Brigitte Bisaro; Andrea Sbarbati; Massimo Zerani; Mirco Galiè; Augusto Amici

Background Mounting clinical and experimental evidence suggests that the shift of carcinomas towards a mesenchymal phenotype is a common paradigm for both resistance to therapy and tumor recurrence. However, the mesenchymalization of carcinomas has not yet entered clinical practice as a crucial diagnostic paradigm. Methodology/Principal Findings By integrating in silico and in vitro studies with our epithelial and mesenchymal tumor models, we compare herein crucial molecular pathways of previously described carcinoma-derived mesenchymal tumor cells (A17) with that of both carcinomas and other mesenchymal phenotypes, such as mesenchymal stem cells (MSCs), breast stroma, and various types of sarcomas. We identified three mesenchymal/stromal-signatures which A17 cells shares with MSCs and breast stroma. By using a recently developed computational approach with publicly available microarray data, we show that these signatures: 1) significantly relates to basal-like breast cancer subtypes; 2) significantly relates to bone metastasis; 3) are up-regulated after hormonal treatment; 4) predict resistance to neoadjuvant therapies. Conclusions/Significance Our results demonstrate that mesenchymalization is an intrinsic property of the most aggressive tumors and it relates to therapy resistance as well as bone metastasis.


European Journal of Cell Biology | 2011

p130Cas promotes invasiveness of three-dimensional ErbB2-transformed mammary acinar structures by enhanced activation of mTOR/p70S6K and Rac1

Giusy Tornillo; Brigitte Bisaro; Maria del Pilar Camacho-Leal; Mirco Galiè; Paolo Provero; Paola Di Stefano; Emilia Turco; Paola Defilippi; Sara Cabodi

ErbB2 over-expression is detected in approximately 25% of invasive breast cancers and is strongly associated with poor patient survival. We have previously demonstrated that p130Cas adaptor is a crucial mediator of ErbB2 transformation. Here, we analysed the molecular mechanisms through which p130Cas controls ErbB2-dependent invasion in three-dimensional cultures of mammary epithelial cells. Concomitant p130Cas over-expression and ErbB2 activation enhance PI3K/Akt and Erk1/2 MAPK signalling pathways and promote invasion of mammary acini. By using pharmacological inhibitors, we demonstrate that both signalling cascades are required for the invasive behaviour of p130Cas over-expressing and ErbB2 activated acini. Erk1/2 MAPK and PI3K/Akt signalling triggers invasion through distinct downstream effectors involving mTOR/p70S6K and Rac1 activation, respectively. Moreover, in silico analyses indicate that p130Cas expression in ErbB2 positive human breast cancers significantly correlates with higher risk to develop distant metastasis, thus underlying the value of the p130Cas/ErbB2 synergism in regulating breast cancer invasion. In conclusion, high levels of p130Cas favour progression of ErbB2-transformed cells towards an invasive phenotype.


Breast Cancer Research | 2012

p130Cas/Cyclooxygenase-2 axis in the control of mesenchymal plasticity of breast cancer cells

Brigitte Bisaro; Maura Montani; Georgia Konstantinidou; Cristina Marchini; Lucia Pietrella; Manuela Iezzi; Mirco Galiè; Francesca Orso; Annalisa Camporeale; Shana Colombo; Paola Di Stefano; Giusy Tornillo; Maria del Pilar Camacho-Leal; Emilia Turco; Daniela Taverna; Sara Cabodi; Augusto Amici; Paola Defilippi

IntroductionIntrinsic plasticity of breast carcinoma cells allows them to undergo a transient and reversible conversion into mesenchymal cells to disseminate into distant organs, where they can re-differentiate to an epithelial-like status to form a cohesive secondary mass. The p130Cas scaffold protein is overexpressed in human ER+ and HER2+ breast cancer where it contributes to cancer progression, invasion and resistance to therapy. However, its role in regulating mesenchymal aggressive breast cancer cells remains to be determined. The aim of this study was to investigate the molecular and functional involvement of this adaptor protein in breast cancer cell plasticity.MethodsWe used silencing strategies and rescue experiments to evaluate phenotypic and biochemical changes from mesenchymal to epithelial traits in breast tumor cell lines. In the mouse A17 cell model previously related to mesenchymal cancer stem cells and basal-like breast cancer, we biochemically dissected the signaling pathways involved and performed functional in vivo tumor growth ability assays. The significance of the signaling platform was assessed in a human setting through the use of specific inhibitors in aggressive MDA-MB-231 subpopulation LM2-4175 cells. To evaluate the clinical relevance of the results, we analyzed publicly available microarray data from the Netherlands Cancer Institute and from the Koo Foundation Sun Yat-Sen Cancer Center.ResultsWe show that p130Cas silencing induces loss of mesenchymal features, by downregulating Vimentin, Snail, Slug and Twist transcriptional factors, resulting in the acquirement of epithelial-like traits. Mechanistically, p130Cas controls Cyclooxygenase-2 transcriptional expression, which in turn contributes to p130Cas-dependent maintenance of mesenchymal phenotype. This cascade of events also compromises in vivo tumor growth through inhibition of cell signaling controlling cell cycle progression. c-Src and JNK kinases are sequential players in p130Cas/ Cyclooxygenase-2 axis and their pharmacological inhibition is sufficient to downregulate Cyclooxygenase-2 leading to an epithelial phenotype. Finally, in silico microarray data analysis indicates that p130Cas and Cyclooxygenase-2 concomitant overexpression predicts poor survival and high probability of breast tumor recurrence.ConclusionsOverall, these data identify a new p130Cas/Cyclooxygenase-2 axis as a crucial element in the control of breast tumor plasticity, opening new therapeutic strategies leading to inhibition of these pathways in aggressive breast carcinoma.


Cell Cycle | 2013

Identification of p130Cas/ErbB2-dependent invasive signatures in transformed mammary epithelial cells

Alessandra Pincini; Giusy Tornillo; Francesca Orso; Marianna Sciortino; Brigitte Bisaro; Maria del Pilar Camacho Leal; Antonio Lembo; Maria Felice Brizzi; Emilia Turco; Cristiano De Pittà; Paolo Provero; Enzo Medico; Paola Defilippi; Daniela Taverna; Sara Cabodi

Understanding transcriptional changes during cancer progression is of crucial importance to develop new and more efficacious diagnostic and therapeutic approaches. It is well known that ErbB2 is overexpressed in about 25% of human invasive breast cancers. We have previously demonstrated that p130Cas overexpression synergizes with ErbB2 in mammary cell transformation and promotes ErbB2-dependent invasion in three-dimensional (3D) cultures of human mammary epithelial cells. Here, by comparing coding and non-coding gene expression profiles, we define the invasive signatures associated with concomitant p130Cas overexpression and ErbB2 activation in 3D cultures of mammary epithelial cells. Specifically, we have found that genes involved in amino acids synthesis (CBS, PHGDH), cell motility, migration (ITPKA, PRDM1), and angiogenesis (HEY1) are upregulated, while genes involved in inflammatory response (SAA1, S100A7) are downregulated. In parallel, we have shown that the expression of specific miRNAs is altered. Among these, miR-200b, miR-222, miR-221, miR-R210, and miR-424 are upregulated, while miR-27a, miR-27b, and miR-23b are downregulated. Overall, this study presents, for the first time, the gene expression changes underlying the invasive behavior following p130Cas overexpression in an ErbB2 transformed mammary cell model.


Oncotarget | 2015

Novel Axl-driven signaling pathway and molecular signature characterize high-grade ovarian cancer patients with poor clinical outcome

Katia Rea; Patrizia Pinciroli; Marialuisa Sensi; Federica Alciato; Brigitte Bisaro; Ludmila Lozneanu; Francesco Raspagliesi; Floriana Centritto; Sara Cabodi; Paola Defilippi; Gian Carlo Avanzi; Silvana Canevari; Antonella Tomassetti

High-grade epithelial ovarian cancer (HGEOC) is a clinically diverse and molecularly heterogeneous disease comprising subtypes with distinct biological features and outcomes. The receptor tyrosine kinases, expressed by EOC cells, and their ligands, present in the microenvironment, activate signaling pathways, which promote EOC cells dissemination. Herein, we established a molecular link between the presence of Gas6 ligand in the ascites of HGEOCs, the expression and activation of its receptor Axl in ovarian cancer cell lines and biopsies, and the progression of these tumors. We demonstrated that Gas6/Axl signalling converges on the integrin β3 pathway in the presence of the adaptor protein p130Cas, thus inducing tumor cell adhesion to the extracellular matrix and invasion. Accordingly, Axl and p130Cas were significantly co-expressed in HGEOC samples. Clinically, we identified an Axl-associated signature of 62 genes able to portray the HGEOCs with the shortest overall survival. These data biologically characterize a group of HGEOCs and could help guide a more effective therapeutic approach to be taken for these patients.


Stem Cells | 2013

P130Cas alters the differentiation potential of mammary luminal progenitors by deregulating C-Kit activity

Giusy Tornillo; Angela Rita Elia; Isabella Castellano; Michela Spadaro; Paola Bernabei; Brigitte Bisaro; Maria del Pilar Camacho-Leal; Alessandra Pincini; Paolo Provero; Anna Sapino; Emilia Turco; Paola Defilippi; Sara Cabodi

It has recently been proposed that defective differentiation of mammary luminal progenitors predisposes to basal‐like breast cancer. However, the molecular and cellular mechanisms involved are still unclear. Here, we describe that the adaptor protein p130Cas is a crucial regulator of mouse mammary epithelial cell (MMEC) differentiation. Using a transgenic mouse model, we show that forced p130Cas overexpression in the luminal progenitor cell compartment results in the expansion of luminal cells, which aberrantly display basal cell features and reduced differentiation in response to lactogenic stimuli. Interestingly, MMECs overexpressing p130Cas exhibit hyperactivation of the tyrosine kinase receptor c‐Kit. In addition, we demonstrate that the constitutive c‐Kit activation alone mimics p130Cas overexpression, whereas c‐Kit downregulation is sufficient to re‐establish proper differentiation of p130Cas overexpressing cells. Overall, our data indicate that high levels of p130Cas, via abnormal c‐Kit activation, promote mammary luminal cell plasticity, thus providing the conditions for the development of basal‐like breast cancer. Consistently, p130Cas is overexpressed in human triple‐negative breast cancer, further suggesting that p130Cas upregulation may be a priming event for the onset of basal‐like breast cancer. STEM Cells2013;31:1422–1433


Molecular and Cellular Therapies | 2015

Proteomic analysis of extracellular vesicles from medullospheres reveals a role for iron in the cancer progression of medulloblastoma

Brigitte Bisaro; Giorgia Mandili; Alice Poli; Andrea Piolatto; Valentina Papa; Francesco Novelli; Giovanna Cenacchi; Marco Forni; Cristina Zanini

BackgroundMedulloblastoma (MB) is the most common malignant childhood brain tumor with the propensity to disseminate at an early stage, and is associated with high morbidity. New treatment strategies are needed to improve cure rates and to reduce life-long cognitive and functional deficits associated with current therapies. Extracellular Vesicles (EVs) are important players in cell-to-cell communication in health and diseases. A clearer understanding of cell-to-cell communication in tumors can be achieved by studying EV secretion in medullospheres. This can reveal subtle modifications induced by the passage from adherent to non-adherent growth, as spheres may account for the adaptation of tumor cells to the mutated environment.MethodsFormation of medullospheres from MB cell lines stabilized in adherent conditions was obtained through culture conditioning based on low attachment flasks and specialized medium. EVs collected by ultracentrifugation, in adherent conditions and as spheres, were subjected to electron microscopy, NanoSight measurements and proteomics.ResultsInterestingly, iron carrier proteins were only found in EVs shed by CSC-enriched tumor cell population of spheres. We used iron chelators when culturing MB cell lines as spheres. Iron chelators induced a decrease in number/size of spheres and in stem cell populations able to initiate in vitro spheres formation.ConclusionsThis work suggests a not yet identified role of iron metabolism in MB progression and invasion and opens the possibility to use chelators as adjuvants in anti-tumoral chemotherapy.

Collaboration


Dive into the Brigitte Bisaro's collaboration.

Top Co-Authors

Avatar

Paola Defilippi

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge