Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brigitte Boizet-Bonhoure is active.

Publication


Featured researches published by Brigitte Boizet-Bonhoure.


The EMBO Journal | 2005

Prostaglandin D2 induces nuclear import of the sex-determining factor SOX9 via its cAMP-PKA phosphorylation

Safia Malki; Serge Nef; Cécile Notarnicola; Laurie Thevenet; Stéphan Gasca; Catherine Méjean; Philippe Berta; Francis Poulat; Brigitte Boizet-Bonhoure

During mammalian gonadal development, nuclear import/export of the transcription factor SOX9 is a critical step of the Sry‐initiated testis‐determining cascade. In this study, we identify a molecular mechanism contributing to the SOX9 nuclear translocation in NT2/D1 cells, which is mediated by the prostaglandin D2 (PGD2) signalling pathway via stimulation of its adenylcyclase‐coupled DP1 receptor. We find that activation of cAMP‐dependent protein kinase A (PKA) induces phosphorylation of SOX9 on its two S64 and S181 PKA sites, and its nuclear localization by enhancing SOX9 binding to the nucleocytoplasmic transport protein importin β. Moreover, in embryonic gonads, we detect a male‐specific prostaglandin D synthase expression and an active PGD2 signal at the time and place of SOX9 expression. We thus propose a new step in the sex‐determining cascade where PGD2 acts as an autocrine factor inducing SOX9 nuclear translocation and subsequent Sertoli cell differentiation.


Proceedings of the National Academy of Sciences of the United States of America | 2002

A nuclear export signal within the high mobility group domain regulates the nucleocytoplasmic translocation of SOX9 during sexual determination

Stéphan Gasca; Joaquín Cañizares; Pascal de Santa Barbara; Catherine Méjean; Francis Poulat; Philippe Berta; Brigitte Boizet-Bonhoure

In mammals, male sex determination starts when the Y chromosome Sry gene is expressed within the undetermined male gonad. One of the earliest effect of Sry expression is to induce up-regulation of Sox9 gene expression in the developing gonad. SOX9, like SRY, contains a high mobility group domain and is sufficient to induce testis differentiation in transgenic XX mice. Before sexual differentiation, SOX9 protein is initially found in the cytoplasm of undifferentiated gonads from both sexes. At the time of testis differentiation and anti-Müllerian hormone expression, it becomes localized to the nuclear compartment in males whereas it is down-regulated in females. In this report, we used NIH 3T3 cells as a model to examine the regulation of SOX9 nucleo-cytoplasmic shuttling. SOX9-transfected cells expressed nuclear and cytoplasmic SOX9 whereas transfected cells treated with the nuclear export inhibitor leptomycin B, displayed an exclusive nuclear localization of SOX9. By using SOX9 deletion constructs in green fluorescent protein fusion proteins, we identified a functional nuclear export signal sequence between amino acids 134 and 147 of SOX9 high mobility group box. More strikingly, we show that inhibiting nuclear export with leptomycin B in mouse XX gonads cultured in vitro induced a sex reversal phenotype characterized by nuclear SOX9 and anti-Müllerian hormone expression. These results indicate that SOX9 nuclear export signal is essential for SOX9 sex-specific subcellular localization and could be part of a regulatory switch repressing (in females) or triggering (in males) male-specific sexual differentiation.


Development | 2009

The PGD2 pathway, independently of FGF9, amplifies SOX9 activity in Sertoli cells during male sexual differentiation.

Brigitte Moniot; Faustine Declosmenil; Francisco Barrionuevo; Gerd Scherer; Kosuke Aritake; Safia Malki; Laetitia Marzi; Anne Cohen-Solal; Ina Georg; Jürgen Klattig; Christoph Englert; Yuna Kim; Blanche Capel; Naomi Eguchi; Yoshihiro Urade; Brigitte Boizet-Bonhoure; Francis Poulat

Activation by the Y-encoded testis determining factor SRY and maintenance of expression of the Sox9 gene encoding the central transcription factor of Sertoli cell differentiation are key events in the mammalian sexual differentiation program. In the mouse XY gonad, SOX9 upregulates Fgf9, which initiates a Sox9/Fgf9 feedforward loop, and Sox9 expression is stimulated by the prostaglandin D2 (PGD2) producing lipocalin prostaglandin D synthase (L-PGDS, or PTDGS) enzyme, which accelerates commitment to the male pathway. In an attempt to decipher the genetic relationships between Sox9 and the L-Pgds/PGD2 pathway during mouse testicular organogenesis, we found that ablation of Sox9 at the onset or during the time window of expression in embryonic Sertoli cells abolished L-Pgds transcription. By contrast, L-Pgds-/- XY embryonic gonads displayed a reduced level of Sox9 transcript and aberrant SOX9 protein subcellular localization. In this study, we demonstrated genetically that the L-Pgds/PGD2 pathway acts as a second amplification loop of Sox9 expression. Moreover, examination of Fgf9-/- and L-Pgds-/- XY embryonic gonads demonstrated that the two Sox9 gene activity amplifying pathways work independently. These data suggest that, once activated and maintained by SOX9, production of testicular L-PGDS leads to the accumulation of PGD2, which in turn activates Sox9 transcription and nuclear translocation of SOX9. This mechanism participates together with FGF9 as an amplification system of Sox9 gene expression and activity during mammalian testicular organogenesis.


The EMBO Journal | 2004

Regulation of human SRY subcellular distribution by its acetylation/deacetylation.

Laurie Thevenet; Catherine Méjean; Brigitte Moniot; Nathalie Bonneaud; Nathalie Galéotti; Gudrun Aldrian-Herrada; Francis Poulat; Philippe Berta; Monsef Benkirane; Brigitte Boizet-Bonhoure

SRY, a Y chromosome‐encoded DNA‐binding protein, is required for testis organogenesis in mammals. Expression of the SRY gene in the genital ridge is followed by diverse early cell events leading to Sertoli cell determination/differentiation and subsequent sex cord formation. Little is known about SRY regulation and its mode of action during testis development, and direct gene targets for SRY are still lacking. In this study, we demonstrate that interaction of the human SRY with histone acetyltransferase p300 induces the acetylation of SRY both in vitro and in vivo at a single conserved lysine residue. We show that acetylation participates in the nuclear localisation of SRY by increasing SRY interaction with importin β, while specific deacetylation by HDAC3 induces a cytoplasmic delocalisation of SRY. Finally, by analysing p300 and HDAC3 expression profiles during both human or mouse gonadal development, we suggest that acetylation and deacetylation of SRY may be important mechanisms for regulating SRY activity during mammalian sex determination.


Biology of Reproduction | 2001

Steroidogenic factor-1 contributes to the cyclic adenosine monophosphate down-regulation of human SRY gene expression

Pascal de Santa Barbara; Catherine Méjean; Brigitte Moniot; Marie-Hèlène Malclès; Philippe Berta; Brigitte Boizet-Bonhoure

Abstract In mammals, male sex determination is initiated by SRY (sex-determining region of the Y chromosome) gene expression and followed by testicular development. This study describes specific down-regulation of the human SRY gene transcription by cAMP stimulation using reverse transcription-polymerase chain reaction experiments. Using transfection experiments, conserved nuclear hormone receptor (NHR1) and Sp1 consensus binding sites were identified as essential for this cAMP transcriptional response. Steroidogenic factor-1 (SF-1), a component of the sex-determination cascade, binds specifically to the NHR1 site and activates the SRY promoter. Activation of SF-1 was abolished by cAMP pretreatment of the cells, suggesting a possible effect of cAMP on the SF-1 protein itself. Indeed, human SF-1 protein contains at least two in vitro cAMP-dependent protein kinase (PKA) phosphorylation sites, leading after phosphorylation to a modification of both DNA-binding activity and interaction with general transcription factors such as Sp1. Taken together, these data suggest that cAMP responsiveness of human SRY promoter involves both SF-1 and Sp1 sites and could act via PKA phosphorylation of the SF-1 protein itself.


The International Journal of Biochemistry & Cell Biology | 2010

Shuttling of SOX proteins.

Safia Malki; Brigitte Boizet-Bonhoure; Francis Poulat

The control of access of SOX proteins to their nuclear target genes is a powerful strategy to activate or repress complex genetic programs. The sub-cellular targeting sequences of SOX proteins are concentrated within the DNA binding motif, the HMG (for high mobility group) domain. Each SOX protein displays two different nuclear localization signals located at the N-terminal and C-terminal part of their highly conserved DNA binding domain. The N-terminal nuclear localization signal binds calmodulin and is potentially regulated by intracellular calcium signalling, while the C-terminal nuclear localization signal, which binds importin-beta, responds to other signalling pathways such as cyclic AMP/protein kinase A. Mutations inducing developmental disorders like sex reversal have been reported in both NLSs of SRY, interfering with its nuclear localization and suggesting that both functional nuclear localization signal are required for its nuclear activity. A nuclear export signal is also present in the HMG box of SOX proteins. Group E SOX proteins harbour a perfect consensus nuclear export signal sequence in contrast to all other SOX proteins, which display only imperfect ones. However, observations made during mouse embryonic development suggest that non-group E SOX proteins could also be regulated by a nuclear export mechanism. The presence of nuclear localization and nuclear export signal sequences confers nucleocytoplasmic shuttling properties to SOX proteins, and suggests that cellular events regulated by SOX proteins are highly dynamic.


Journal of Biological Chemistry | 2005

NHERF2/SIP-1 Interacts with Mouse SRY via a Different Mechanism than Human SRY

Laurie Thevenet; Kenneth H. Albrecht; Safia Malki; Philippe Berta; Brigitte Boizet-Bonhoure; Francis Poulat

In mammals, male sex determination is controlled by the SRY protein, which drives differentiation of the bipotential embryonic gonads into testes by activating the Sertoli cell differentiation program. The morphological effects of SRY are well documented; however, its molecular mechanism of action remains unknown. Moreover, SRY proteins display high sequence variability among mammalian species, which makes protein motifs difficult to delineate. We previously isolated SIP-1/NHERF2 as a human SRY-interacting protein. SIP-1/NHERF2, a PDZ protein, interacts with the C-terminal extremity of the human SRY protein. Here we showed that the interaction of SIP-1/NHERF2 and SRY via the SIP-1/NHERF2 PDZ1 domain is conserved in mice. However, the interaction occurs via a domain that is internal to the mouse SRY protein and involves a different recognition mechanism than human SRY. Furthermore, we show that mouse and human SRY induce nuclear accumulation of the SIP-1/NHERF2 protein in cultured cells. Finally, a transgenic mouse line expressing green fluorescent protein under the control of the mouse Sry promoter allowed us to show that SRY and SIP-1/NHERF2 are co-expressed in the nucleus of pre-Sertoli cells during testis determination. Taken together, our results suggested that the function of SIP-1/NHERF2 as an SRY cofactor during testis determination is conserved between human and mouse.


Developmental Dynamics | 2008

Sex-specific expression of SOX9 during gonadogenesis in the amphibian Xenopus tropicalis

Anwar El Jamil; Rasha Kanhoush; Solange Magre; Brigitte Boizet-Bonhoure; May Penrad-Mobayed

To investigate the role of SOX9 gene in amphibian gonadogenesis, we analyzed its expression during male and female gonadogenesis in Xenopus tropicalis. The results showed that in both sexes SOX9 mRNA and protein were first detectable after metamorphosis when the gonads were well differentiated and remained present until the adult stage. In the testis, SOX9 expression was restricted to the nucleus of Sertoli‐like cells, similarly to what has been observed in other vertebrates suggesting a conserved role in vertebrate testicular differentiation. In the ovary, in sharp contrast with what has been observed in all vertebrates examined so far, the SOX9 protein was localized in the cytoplasm of previtellogenic oocytes before being translocated into the nucleus of vitellogenic oocytes suggesting an unexpected role during oogenesis. These results suggest that the SOX9 gene may not be a sex‐determining gene in X. tropicalis and may play different functions in testicular and ovarian differentiation. Developmental Dynamics 237:2996–3005, 2008.


Biochimica et Biophysica Acta | 1998

Characterization of two Sp1 binding sites of the human sex determining SRY promoter

Marion Desclozeaux; Francis Poulat; Pascal de Santa Barbara; Stéphan Soullier; Philippe Jay; Philippe Berta; Brigitte Boizet-Bonhoure

To investigate the molecular basis of the human SRY gene regulation, we have examined the significance of two potential binding sites for the transcription factor Sp1 (Sp1A: -124 to -131 and Sp1B: -147 to -154) by DNase I footprinting and gel mobility shift assays. Cotransfection experiments in Drosophila SL2 cells implicated Sp1 protein in the transcriptional activation of the SRY promoter.


Nature Neuroscience | 2014

Prostaglandin D2 synthase/GPR44: a signaling axis in PNS myelination

Amelia Trimarco; Maria Grazia Forese; Valentina Alfieri; Alessandra Lucente; Paola Brambilla; Giorgia Dina; Damiana Pieragostino; Paolo Sacchetta; Yoshihiro Urade; Brigitte Boizet-Bonhoure; Filippo Martinelli Boneschi; Angelo Quattrini; Carla Taveggia

Neuregulin 1 type III is processed following regulated intramembrane proteolysis, which allows communication from the plasma membrane to the nucleus. We found that the intracellular domain of neuregulin 1 type III upregulated the prostaglandin D2 synthase (L-pgds, also known as Ptgds) gene, which, together with the G protein–coupled receptor Gpr44, forms a previously unknown pathway in PNS myelination. Neuronal L-PGDS is secreted and produces the PGD2 prostanoid, a ligand of Gpr44. We found that mice lacking L-PGDS were hypomyelinated. Consistent with this, specific inhibition of L-PGDS activity impaired in vitro myelination and caused myelin damage. Furthermore, in vivo ablation and in vitro knockdown of glial Gpr44 impaired myelination. Finally, we identified Nfatc4, a key transcription factor for myelination, as one of the downstream effectors of PGD2 activity in Schwann cells. Thus, L-PGDS and Gpr44 are previously unknown components of an axo-glial interaction that controls PNS myelination and possibly myelin maintenance.

Collaboration


Dive into the Brigitte Boizet-Bonhoure's collaboration.

Top Co-Authors

Avatar

Francis Poulat

French Institute of Health and Medical Research

View shared research outputs
Top Co-Authors

Avatar

Brigitte Moniot

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Safia Malki

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Stéphan Gasca

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andalib Farhat

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Catherine Méjean

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Faustine Declosmenil

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Philippe Berta

French Institute of Health and Medical Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge