Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brigitte Gouesnard is active.

Publication


Featured researches published by Brigitte Gouesnard.


Genetics | 2005

Maize Adaptation to Temperate Climate: Relationship Between Population Structure and Polymorphism in the Dwarf8 Gene

Letizia Camus-Kulandaivelu; Jean-Baptiste Veyrieras; Delphine Madur; Valérie Combes; Marie Fourmann; Stéphanie Barraud; Pierre Dubreuil; Brigitte Gouesnard; Domenica Manicacci; Alain Charcosset

To investigate the genetic basis of maize adaptation to temperate climate, collections of 375 inbred lines and 275 landraces, representative of American and European diversity, were evaluated for flowering time under short- and long-day conditions. The inbred line collection was genotyped for 55 genomewide simple sequence repeat (SSR) markers. Comparison of inbred line population structure with that of landraces, as determined with 24 SSR loci, underlined strong effects of both historical and modern selection on population structure and a clear relationship with geographical origins. The late tropical groups and the early “Northern Flint” group from the northern United States and northern Europe exhibited different flowering times. Both collections were genotyped for a 6-bp insertion/deletion in the Dwarf8 (D8idp) gene, previously reported to be potentially involved in flowering time variation in a 102 American inbred panel. Among-group D8idp differentiation was much higher than that for any SSR marker, suggesting diversifying selection. Correcting for population structure, D8idp was associated with flowering time under long-day conditions, the deletion allele showing an average earlier flowering of 29 degree days for inbreds and 145 degree days for landraces. Additionally, the deletion allele occurred at a high frequency (>80%) in Northern Flint while being almost absent (<5%) in tropical materials. Altogether, these results indicate that Dwarf8 could be involved in maize climatic adaptation through diversifying selection for flowering time.


Theoretical and Applied Genetics | 2003

Maize introduction into Europe: the history reviewed in the light of molecular data

C. Rebourg; M. Chastanet; Brigitte Gouesnard; Claude Welcker; Pierre Dubreuil; Alain Charcosset

Abstract.The resolution that can be obtained from molecular genetic markers affords new prospects for understanding the dispersion of agricultural species from their primary origin centres. In order to study the introduction and the dispersion of maize in Europe, we have characterised a large and representative set of maize populations of both American and European origins for their variation at 29 restriction fragment length polymorphism loci. Polymorphism was higher for American populations than for European populations (respectively, 12.3 and 9.6 alleles per locus, on average), and only a few alleles were specific to European populations. Investigation of genetic similarity between populations from both continents made it possible to identify various types of American maize introduced into Europe at different times or in different places and which have given rise to distinctive European races. Beyond confirming the importance of Caribbean germplasm, the first maize type to be introduced into Europe, this research revealed that introductions of Northern American flint populations have played a key role in the adaptation of maize to the European climate. According to a detailed historical investigation, the introduction of these populations must have occurred shortly after the discovery of the New World.


Heredity | 2001

Large scale molecular analysis of traditional European maize populations. Relationships with morphological variation

C Rebourg; Brigitte Gouesnard; Alain Charcosset

A representative sample of 130 European traditional maize populations was analysed for both their morphological and molecular variation. The morphological analysis of 19 variables revealed a significant variability. Correlation analysis allowed us to distinguish between traits affected by earliness (plant and ear height) and structural traits (plant architecture, grain structure). Two main morphological types could be distinguished. Molecular analyses were performed for 29 RFLP loci on DNA bulks. The number of alleles detected was high when compared to previous studies (9.59 alleles per locus). Genetic diversity was also high (0.55), with a strong differentiation between populations (GST value of 35.6%). A clear relationship between the genetic diversity of the populations and their agronomic performances was highlighted. Morphological and molecular distances showed a tendency towards a triangular relationship. We therefore considered a two-phase process to be the most efficient approach for the classification of genetic resources: firstly, a molecular study to define groups of genetically close populations, and secondly a morphological description of populations from each group. In our European collection, this approach allowed us to separate the populations from Northern and Southern Europe and to define six groups of genetically close populations, comparable to European races. This study opens new prospects concerning the molecular analysis of very large collections of genetic resources, hitherto limited by the necessity of individual analyses, and proposes a first molecular classification of European maize germplasm.


Molecular Ecology | 2012

Is diversification history of maize influencing selection of soil bacteria by roots

Marie-Lara Bouffaud; Martina Kyselková; Brigitte Gouesnard; Geneviève L. Grundmann; Daniel Muller; Yvan Moënne-Loccoz

A wide range of plant lines has been propagated by farmers during crop selection and dissemination, but consequences of this crop diversification on plant‐microbe interactions have been neglected. Our hypothesis was that crop evolutionary history shaped the way the resulting lines interact with soil bacteria in their rhizospheres. Here, the significance of maize diversification as a factor influencing selection of soil bacteria by seedling roots was assessed by comparing rhizobacterial community composition of inbred lines representing the five main genetic groups of maize, cultivated in a same European soil. Rhizobacterial community composition of 21‐day‐old seedlings was analysed using a 16S rRNA taxonomic microarray targeting 19 bacterial phyla. Rhizobacterial community composition of inbred lines depended on the maize genetic group. Differences were largely due to the prevalence of certain Betaproteobacteria and especially Burkholderia, as confirmed by quantitative PCR and cloning/sequencing. However, these differences in bacterial root colonization did not correlate with plant microsatellite genetic distances between maize genetic groups or individual lines. Therefore, the genetic structure of maize that arose during crop diversification (resulting in five main groups), but not the extent of maize diversification itself (as determined by maize genetic distances), was a significant factor shaping rhizobacterial community composition of seedlings.


Genetic Resources and Crop Evolution | 2002

Analysis of photoperiod sensitivity within a collection of tropical maize populations

Brigitte Gouesnard; Cécile Rebourg; Claude Welcker; Alain Charcosset

We analyzed the variability of a large maize (Zea mays L.) collection of152 tropical populations for photoperiod sensitivity and grain productivityunder long-day conditions to investigate their potential adaptation to temperateconditions. A multilocal experimental design was used: one location withshort-day conditions (Guadeloupe), one location with medium-day conditions (latesowing in the south of France) and two locations with long-day conditions (earlysowing in both the North and South of France). The photoperiod sensitivity wasestimated by the slope of the regression of thermal time from sowing to 50%anthesis on photoperiod. We found highly significant effects of latitude andaltitude of the collecting site of the population on photoperiod sensitivity anda significant but small interaction between these two factors. Populationsoriginated from low altitudes and low latitudes are highly sensitive tophotoperiod, whereas highland populations never display a high photoperiodsensitivity, whatever the latitude of origin. Grain productivity under long-dayconditions was not highly correlated with photoperiod sensitivity. Andeanpopulations were little sensitive to photoperiod and exhibited poor grainproduction under long-day conditions. In contrast, some populations from theCaribbean such as populations from Cuban Flint and Early Caribbean racesexhibited a good grain production although sensitive to photoperiod. The goodadaptation of some Caribbean material to temperate conditions is consistent withthe hypothesis of the successful introduction of Caribbean germplasm in southernregions of the Old World.


Theoretical and Applied Genetics | 1996

Evaluation of agronomic traits and analysis of exotic germ plasm polymorphism in adapted x exotic maize crosses

Brigitte Gouesnard; J. Sanou; Antoine Panouillé; Virginie Bourion; Armand Boyat

The utilization of exotic germ plasm is difficult due to its non-adaptability. This study investigates the possibility of exotic germ plasm loss during adaptation, and the effect of an additional cross with elite material on the breeding value of exotic x adapted material. The study was conducted on a temperate x highland tropical composite (or pool) developed in order to broaden the genetic variability of maize in north western Europe. The frequency of unique exotic alleles and the isoenzymatic polymorphism at four loci were analysed in the pool itself, in the pool after mild selection, and in the selected pool crossed with elite material. Based on these data, no significant deviation seemed to occur during the mild selection and the cross. The pool and the pool x elite germ plasm cross were evaluated in testcrosses with two complementary testers for both grain and forage production. The pool was later in maturity, more susceptible to lodging, and yielded less than the pool x elite germ plasm crosses for all evaluations. The highest estimates of genetic variance were obtained in the pool for earliness and height traits, and for yield. However, based on the predicted genotypic mean of the selected population, the pool had a lower breeding value than the pool x elite germ plasm cross. The pool x elite germ plasm cross is thus preferred to initiate selection.


Heredity | 2017

Association mapping for phenology and plant architecture in maize shows higher power for developmental traits compared with growth influenced traits

Sophie Bouchet; Pascal Bertin; Thomas Presterl; Philippe Jamin; Denis Coubriche; Brigitte Gouesnard; Jacques Laborde; Alain Charcosset

Plant architecture, phenology and yield components of cultivated plants have repeatedly been shaped by selection to meet human needs and adaptation to different environments. Here we assessed the genetic architecture of 24 correlated maize traits that interact during plant cycle. Overall, 336 lines were phenotyped in a network of 9 trials and genotyped with 50K single-nucleotide polymorphisms. Phenology was the main factor of differentiation between genetic groups. Then yield components distinguished dents from lower yielding genetic groups. However, most of trait variation occurred within group and we observed similar overall and within group correlations, suggesting a major effect of pleiotropy and/or linkage. We found 34 quantitative trait loci (QTLs) for individual traits and six for trait combinations corresponding to PCA coordinates. Among them, only five were pleiotropic. We found a cluster of QTLs in a 5 Mb region around Tb1 associated with tiller number, ear row number and the first PCA axis, the latter being positively correlated to flowering time and negatively correlated to yield. Kn1 and ZmNIP1 were candidate genes for tillering, ZCN8 for leaf number and Rubisco Activase 1 for kernel weight. Experimental repeatabilities, numbers of QTLs and proportion of explained variation were higher for traits related to plant development such as tillering, leaf number and flowering time, than for traits affected by growth such as yield components. This suggests a simpler genetic determinism with larger individual QTL effects for the first category.


Plant and Soil | 2016

Expression on roots and contribution to maize phytostimulation of 1-aminocyclopropane-1-decarboxylate deaminase gene acdS in Pseudomonas fluorescens F113

Jordan Vacheron; Emeline Combes-Meynet; Vincent Walker; Brigitte Gouesnard; Daniel Muller; Yvan Moënne-Loccoz; Claire Prigent-Combaret

AimsThe plant-beneficial bacterium Pseudomonas fluorescens F113 harbours an acdS gene, which enables deamination of 1-aminocyclopropane-1-carboxylate. The impact of abiotic and biotic factors on the expression of this gene was assessed, as well as the plant-beneficial properties of F113 under different soil moistures.MethodsAn acdS-egfp biosensor was constructed in F113, validated in vitro and used to analyse, by microscopy, its expression on roots of Zea mays comparatively to Beta vulgaris. An acdS mutant was constructed and compared with the wild-type to characterize plant-beneficial effects of F113 on maize lines EP1 and FV2, under well-watered and water deficit conditions.ResultsDifferent patterns of root colonization and acdS expression were observed according to plant genotype. acdS rhizoplane expression was higher on Beta vulgaris, and on maize line FV2 and hybrid PR37Y15 than on maize line EP1 and teosinte. Strain F113 but not its acdS mutant promoted root growth of EP1 under well-watered conditions and germination of FV2 under water deficit conditions.ConclusionsMaize lines differed in their ability to induce acdS expression and to respond to P. fluorescens F113. The maize line leading to higher acdS expression, FV2, was the one benefiting from inoculation under water deficit.


Theoretical and Applied Genetics | 2002

RFLP diversity and relationships among traditional European maize populations.

P. Gauthier; Brigitte Gouesnard; J. Dallard; R. Redaelli; C. Rebourg; Alain Charcosset; Armand Boyat


Crop Science | 2000

Genotype × environment interactions in maize hybrids from temperate or highland tropical origin

Catherine Giauffret; J. Lothrop; D. Dorvillez; Brigitte Gouesnard; M. Derieux

Collaboration


Dive into the Brigitte Gouesnard's collaboration.

Top Co-Authors

Avatar

Alain Charcosset

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Armand Boyat

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Antoine Panouillé

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Claude Welcker

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Pierre Dubreuil

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

P. Revilla

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

A. Boyat

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

C. Rebourg

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Christine Tollon-Cordet

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge