Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brigitte von Rechenberg is active.

Publication


Featured researches published by Brigitte von Rechenberg.


Bone | 2003

Localized insulin-like growth factor I delivery to enhance new bone formation

Lorenz Meinel; E. Zoidis; J. Zapf; Paulo Hassa; Michael O. Hottiger; Jörg A Auer; Rebecca Schneider; Bruno Gander; Vera Luginbuehl; Regula Bettschart-Wolfisberger; Oscar E Illi; Hans P. Merkle; Brigitte von Rechenberg

Insulin-like growth factor I (IGF I) exerts an important role during skeletal growth and bone formation. Therefore, its localized delivery appears attractive for the treatment of bone defects. To prolong IGF I delivery, we entrapped the protein into biodegradable poly(lactide-co-glycolide) microspheres (PLGA MS) and evaluated the potential of this delivery system for new bone formation in two defect models of ovine long bones, i.e., a 8-mm methaphyseal drill hole and a 10-mm segmental tibia defect. Administration of 100 microg of IGF I in PLGA MS resulted in new bone formation within 3 weeks in the drill hole and bridging of the segmental defect within 8 weeks. The observed increase of 12% newly formed bone in the drill hole defect after 3 weeks was substantial, compared to the measured morphometric bone-to-total area ratio of 31% bone in normal cancellous bone. Bone regeneration was further explored by measuring gene expression of typical markers for local mediators and growth factors by real-time polymerase chain reaction. Inflammation was reduced in presence of IGF I and this in vivo observation was corroborated in vitro by quantifying gene expression of inflammatory proteins and by assessing the activation of the NF-kappaB pathway, playing an important role in the regulation of inflammation. Administration of the IGF I delivery system downregulated inflammatory marker gene expression at the site of bone injury, induced new bone formation and reduced bone resorption, and resulted in bridging of 10-mm segmental tibial defects within 8 weeks.


Journal of Bone and Joint Surgery, American Volume | 2010

Far cortical locking can improve healing of fractures stabilized with locking plates.

Michael Bottlang; Maren Lesser; Julia Koerber; Josef Doornink; Brigitte von Rechenberg; Peter Augat; Daniel C. Fitzpatrick; Steven M. Madey; J. Lawrence Marsh

BACKGROUND Locked bridge plating relies on secondary bone healing, which requires interfragmentary motion for callus formation. This study evaluated healing of fractures stabilized with a locked plating construct and a far cortical locking construct, which is a modified locked plating approach that promotes interfragmentary motion. The study tested whether far cortical locking constructs can improve fracture-healing compared with standard locked plating constructs. METHODS In an established ovine tibial osteotomy model with a 3-mm gap size, twelve osteotomies were randomly stabilized with locked plating or far cortical locking constructs applied medially. The far cortical locking constructs were designed to provide 84% lower stiffness than the locked plating constructs and permitted nearly parallel gap motion. Fracture-healing was monitored on weekly radiographs. After the animals were killed at week 9, healed tibiae were analyzed by computed tomography, mechanical testing in torsion, and histological examination. RESULTS Callus on weekly radiographs was greater in the far cortical locking constructs than in the locked plating constructs. At week 9, the far cortical locking group had a 36% greater callus volume (p = 0.03) and a 44% higher bone mineral content (p = 0.013) than the locked plating group. Callus in the locked plating specimens was asymmetric, having 49% less bone mineral content in the medial callus than in the lateral callus (p = 0.003). In far cortical locking specimens, medial and lateral callus had similar bone mineral content (p = 0.91). The far cortical locking specimens healed to be 54% stronger in torsion (p = 0.023) and sustained 156% greater energy to failure in torsion (p < 0.001) than locked plating specimens. Histologically, three of six locked plating specimens had deficient bridging across the medial cortex, while all remaining cortices had bridged. CONCLUSIONS Inconsistent and asymmetric callus formation with locked plating constructs is likely due to their high stiffness and asymmetric gap closure. By providing flexible fixation and nearly parallel interfragmentary motion, far cortical locking constructs form more callus and heal to be stronger in torsion than locked plating constructs.


Nucleic Acids Research | 2006

Enhancement of the efficiency of non-viral gene delivery by application of pulsed magnetic field

Sarah W. Kamau; Paul O. Hassa; Benedikt Steitz; Alke Petri-Fink; Heinrich Hofmann; Margarethe Hofmann-Amtenbrink; Brigitte von Rechenberg; Michael O. Hottiger

New approaches to increase the efficiency of non-viral gene delivery are still required. Here we report a simple approach that enhances gene delivery using permanent and pulsating magnetic fields. DNA plasmids and novel DNA fragments (PCR products) containing sequence encoding for green fluorescent protein were coupled to polyethylenimine coated superparamagnetic nanoparticles (SPIONs). The complexes were added to cells that were subsequently exposed to permanent and pulsating magnetic fields. Presence of these magnetic fields significantly increased the transfection efficiency 40 times more than in cells not exposed to the magnetic field. The transfection efficiency was highest when the nanoparticles were sedimented on the permanent magnet before the application of the pulsating field, both for small (50 nm) and large (200–250 nm) nanoparticles. The highly efficient gene transfer already within 5 min shows that this technique is a powerful tool for future in vivo studies, where rapid gene delivery is required before systemic clearance or filtration of the gene vectors occurs.


Journal of Shoulder and Elbow Surgery | 2009

Neer Award 2007: Reversion of structural muscle changes caused by chronic rotator cuff tears using continuous musculotendinous traction. An experimental study in sheep

Christian Gerber; Dominik C. Meyer; Eric Frey; Brigitte von Rechenberg; Hans Hoppeler; Robert Frigg; Bernhard Jost; Matthias A. Zumstein

HYPOTHESIS Chronic rotator cuff tears are associated with irreversible architectural muscle changes and a high rate of repair failure. The changes observed in man and their irreversibility with a single stage repair can be reproduced in sheep. It was the purpose of this experiment to test the hypothesis that slow, continuous elongation of a retracted musculotendinous unit allows reversal of the currently irreversible structural muscle changes. MATERIALS AND METHODS The infraspinatus tendon of 12 sheep was released using a greater tuberosity osteotomy and allowed to retract for 4 months. Then, a new device was mounted on the scapular spine and used to extend the infraspinatus muscuculotendinous unit transcutaneously by 1 mm per day. Thereafter, the tendon was repaired back to the greater tuberosity. We assessed the muscular architecture using magnetic resonance imaging, macroscopic dissection, histology, and electron microscopy. Fatty infiltration (in Hounsfield units 1/4 HU) and muscular cross-sectional area (in % of the control side) were monitored with computed tomography at tendon release, initiation of elongation, repair, and at sacrifice. RESULTS Sixteen weeks after tendon release, the mean tendon retraction was 29 +/- 6 mm (14% of original length, P = .008). In 8 sheep, elongation was achieved as planned (group I), but in 4, the elongation failed technically (group II). The mean traction time was 24 +/- 6 days with a mean traction distance of 19 +/- 4 mm. At sacrifice, the mean pennation angle in the infraspinatus of group I was not different from the control side (29.8 degrees +/-7.5 degrees vs. 30 degrees +/-6 degrees , P = .575). In group II, the pennation angle had increased from 30 degrees +/-6 degrees to 55 degrees +/-14 degrees (P = .035). There was no fatty infiltration at the time of tendon release. After retraction, there was a significant increase in fatty infiltration of the infraspinatus muscle and a decrease of its cross-sectional area to 57% of the contralateral side (P = .0001). During traction, the degree of fatty infiltration remained unchanged (36 HU to 38 HU, P = .381), and atrophy improved to a muscle square area of 78% of the contralateral side (P = .0001) in group I. In group II, an increase of fatty infiltration was measured from 36 HU to 28 HU; however, this increase was not significant (P = .144). Atrophy did not change in group II (57-55%, P = .946). At sacrifice, the remaining muscle mass was 64% in group I and 46% in group II (P = .019). DISCUSSION Our preliminary results document, that continuous elongation of a retracted, fatty infiltrated and atrophied musculotendinous unit is technically feasible. CONCLUSION In the sheep, continuous elongation can lead to restoration of normal muscle architecture, to partial reversal of muscle atrophy, and to arrest of the progression of fatty infiltration. LEVEL OF EVIDENCE Basic science level 2; Prospective comparative therapeutic study.


Journal of Bone and Joint Surgery, American Volume | 2010

Effects of Construct Stiffness on Healing of Fractures Stabilized with Locking Plates

Michael Bottlang; Josef Doornink; Trevor J. Lujan; Daniel C. Fitzpatrick; J. Lawrence Marsh; Peter Augat; Brigitte von Rechenberg; Maren Lesser; Steven M. Madey

The benefits of locked-plate fixation, which include improved fixation strength in osteoporotic bone1-3 and the ability to provide a more biologically friendly fixation construct4,5, have led to the rapid adoption of this technology. Biological fixation of comminuted fractures with locking plates relies on secondary fracture-healing by callus formation6,7, which is stimulated by interfragmentary motion in the millimeter range8,9. Secondary bone-healing can be enhanced by active or passive dynamization10,11. Conversely, bone-healing can be suppressed by rigid fracture fixation aimed at preventing interfragmentary motion12. Biomechanical studies have suggested that locked-plate constructs are stiff and suppress interfragmentary motion to a level that may be insufficient to reliably promote secondary fracture-healing1,13-15. Recent clinical studies substantiate the concern that the inherently high stiffness of locked-plate constructs suppresses callus formation, contributing to a nonunion rate of up to 19% seen with periarticular locking plates16,17. Deficient healing may also contribute to late hardware failures seen with locking plates18-20 since, in the absence of osseous union, constructs remain load-bearing and eventually fail by hardware fatigue or loss of fixation. This paper summarizes a line of research that addresses two questions of critical importance when using locked-plate constructs: 1. Does the high stiffness of locked-plate constructs suppress callus formation and fracture-healing? 2. Can a stiffness-reduced locked-plate technique, termed far cortical locking , improve fracture-healing, compared with standard locked plating, by providing flexible fixation and parallel interfragmentary motion? First, we will present the findings of biomechanical and clinical studies of the effect of construct stiffness on interfragmentary motion and fracture-healing with locking plates. Subsequently, studies that describe the function, benefits, and clinical application of far cortical locking are …


Biomaterials | 2009

Bone healing induced by local delivery of an engineered parathyroid hormone prodrug

Isabelle Arrighi; Silke Mark; Monica Alvisi; Brigitte von Rechenberg; Jeffrey A. Hubbell; Jason Schense

Regenerative medicine requires innovative therapeutic designs to accommodate high morphogen concentrations in local depots, provide their sustained presence, and enhance cellular invasion and directed differentiation. Here we present an example for inducing local bone regeneration with a matrix-bound engineered active fragment of human parathyroid hormone (PTH(1-34)), linked to a transglutaminase substrate for binding to fibrin as a delivery and cell-invasion matrix with an intervening plasmin-sensitive link (TGplPTH(1-34)). The precursor form displays very little activity and signaling to osteoblasts, whereas the plasmin cleavage product, as it would be induced under the enzymatic influence of cells remodeling the matrix, was highly active. In vivo animal bone-defect experiments showed dose-dependent bone formation using the PTH-fibrin matrix, with evidence of both osteoconductive and osteoinductive bone-healing mechanisms. Results showed that this PTH-derivatized matrix may have potential utility in humans as a replacement for bone grafts or to repair bone defects.


Science Translational Medicine | 2014

Adult human neural crest-derived cells for articular cartilage repair.

Karoliina Pelttari; Benjamin E. Pippenger; Marcus Mumme; Sandra Feliciano; Celeste Scotti; Pierre Mainil-Varlet; Alfredo Procino; Brigitte von Rechenberg; Thomas Schwamborn; Marcel Jakob; Clemente Cillo; Andrea Barbero; Ivan Martin

HOX-negative, differentiated neural crest–derived adult cells from the nasal septum display self-renewal capacity and environmental plasticity and are compatible for articular cartilage repair. Cells from Nose Repair Tissue in Joint Cartilage repair remains a yet unmet clinical need, with few viable cell therapy options available. Taking cells from the knee or ankle to repair worn cartilage requires additional surgery and, in turn, pain and healing for the patient. As such, a new, accessible cell source would greatly benefit these patients. Here, Pelttari and colleagues looked up the nose for cells that may have the capacity to regenerate cartilage. Nasal septum cells arise from the neuroectoderm—the tissue that gives rise to the nervous system—and are better at repairing tissues than their mesoderm counterparts. These regenerative capabilities have been attributed to a lack of homeobox (HOX) gene expression. The authors therefore investigated whether nasal chondrocytes (HOX-negative, neuroectoderm origin) were compatible with an articular cartilage environment, like the knee joint (HOX-positive, mesoderm origin). The authors discovered that adult human nasal chondrocytes were able to self-renew and also, to their surprise, adopt a HOX-positive profile upon implantation into a mesoderm environment; in goats, this led to repair of experimental articular cartilage defects. In an ongoing clinical trial, human nasal chondrocytes have been shown to be safe once transplanted, suggesting translation of this new, easy-to-access cell source for repairing damaged joints. In embryonic models and stem cell systems, mesenchymal cells derived from the neuroectoderm can be distinguished from mesoderm-derived cells by their Hox-negative profile—a phenotype associated with enhanced capacity of tissue regeneration. We investigated whether developmental origin and Hox negativity correlated with self-renewal and environmental plasticity also in differentiated cells from adults. Using hyaline cartilage as a model, we showed that adult human neuroectoderm-derived nasal chondrocytes (NCs) can be constitutively distinguished from mesoderm-derived articular chondrocytes (ACs) by lack of expression of specific HOX genes, including HOXC4 and HOXD8. In contrast to ACs, serially cloned NCs could be continuously reverted from differentiated to dedifferentiated states, conserving the ability to form cartilage tissue in vitro and in vivo. NCs could also be reprogrammed to stably express Hox genes typical of ACs upon implantation into goat articular cartilage defects, directly contributing to cartilage repair. Our findings identify previously unrecognized regenerative properties of HOX-negative differentiated neuroectoderm cells in adults, implying a role for NCs in the unmet clinical challenge of articular cartilage repair. An ongoing phase 1 clinical trial preliminarily indicated the safety and feasibility of autologous NC–based engineered tissues for the treatment of traumatic articular cartilage lesions.


BMC Musculoskeletal Disorders | 2006

An animal model in sheep for biocompatibility testing of biomaterials in cancellous bones

Katja Nuss; Joerg A. Auer; Alois Boos; Brigitte von Rechenberg

BackgroundThe past years have seen the development of many synthetic bone replacements. To test their biocompatibility and ability for osseointegration, osseoinduction and -conduction requires their placement within bone preferably in an animal experiment of a higher species.MethodsA suitable experimental animal model in sheep with drill holes of 8 mm diameter and 13 mm depth within the proximal and distal humerus and femur for testing biocompatibility issues is introduced.ResultsThis present sheep model allows the placing of up to 8 different test materials within one animal and because of the standardization of the bone defect, routine evaluation by means of histomorphometry is easily conducted. This method was used successfully in 66 White Alpine Sheep. When the drill holes were correctly placed no complications such as spontaneous fractures were encountered.ConclusionThis experimental animal model serves an excellent basis for testing the biocompatibility of novel biomaterials to be used as bone replacement or new bone formation enhancing materials.


The Open Orthopaedics Journal | 2008

Biocompatibility Issues with Modern Implants in Bone - A Review for Clinical Orthopedics

Katja Nuss; Brigitte von Rechenberg

Skeletal defects may result from traumatic, infectious, congenital or neoplastic processes and are considered to be a challenge for reconstructive surgery. Although the autologous bone graft is still the “gold standard”, there is continuing demand for bone substitutes because of associated disadvantages, such as limited supply and potential donor side morbidity [1]. This is not only true for indications in orthopedic and craniomaxillofacial surgeries, but also in repairing endodontic defects and in dental implantology. Before clinical use all new bone substitute materials have to be validated for their osseoconductive and - depending on the composition of the material also –inductive ability, as well as for their long-term biocompatibility in bone. Serving this purpose various bone healing models to test osteocompatibility and inflammatory potential of a novel material on one hand and, on the other hand, non-healing osseous defects to assess the healing potential of a bone substitute material have been developed. Sometimes the use of more than one implantation site can be helpful to provide a wide range of information about a new material [2]. Important markers for biocompatibility and inflammatory responses are the cell types appearing after the implantation of foreign material. There, especially the role of foreign body giant cells (FBGC) is discussed controversial in the pertinent literature, such that it is not clear whether their presence marks an incompatibility of the biomaterial, or whether it belongs to a normal degradation behavior of modern, resorbable biomaterials. This publication is highlighting the different views currently existing about the function of FBGC that appear in response to biomaterials at the implantation sites. A short overview of the general classes of biomaterials, where FBGC may appear as cellular response, is added for clarity, but may not be complete.


BMC Musculoskeletal Disorders | 2012

Osseointegration and biocompatibility of different metal implants - a comparative experimental investigation in sheep

Michael Plecko; Christine Sievert; Daniel Andermatt; Robert Frigg; Peter W. Kronen; Karina Klein; Stefan Stübinger; Katja Nuss; Alexander Bürki; Stephen J. Ferguson; Ulrich Stoeckle; Brigitte von Rechenberg

BackgroundIn the present study, 4 different metallic implant materials, either partly coated or polished, were tested for their osseointegration and biocompatibility in a pelvic implantation model in sheep.MethodsMaterials to be evaluated were: Cobalt-Chrome (CC), Cobalt-Chrome/Titanium coating (CCTC), Cobalt-Chrome/Zirconium/Titanium coating (CCZTC), Pure Titanium Standard (PTST), Steel, TAN Standard (TANST) and TAN new finish (TANNEW). Surgery was performed on 7 sheep, with 18 implants per sheep, for a total of 63 implants. After 8 weeks, the specimens were harvested and evaluated macroscopically, radiologically, biomechanically (removal torque), histomorphometrically and histologically.ResultsCobalt-Chrome screws showed significantly (p = 0.031) lower removal torque values than pure titanium screws and also a tendency towards lower values compared to the other materials, except for steel. Steel screws showed no significant differences, in comparison to cobalt-chrome and TANST, however also a trend towards lower torque values than the remaining materials. The results of the fluorescence sections agreed with those of the biomechanical test. Histomorphometrically, there were no significant differences of bone area between the groups. The BIC (bone-to-implant-contact), used for the assessment of the osseointegration, was significantly lower for cobalt-chrome, compared to steel (p = 0.001). Steel again showed a lower ratio (p = 0.0001) compared to the other materials.ConclusionThis study demonstrated that cobalt-chrome and steel show less osseointegration than the other metals and metal-alloys. However, osseointegration of cobalt-chrome was improved by zirconium and/or titanium based coatings (CCTC, TANST, TAN, TANNEW) being similar as pure titanium in their osseointegrative behavior.

Collaboration


Dive into the Brigitte von Rechenberg's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Heinrich Hofmann

École Polytechnique Fédérale de Lausanne

View shared research outputs
Researchain Logo
Decentralizing Knowledge