Briony L. Gliddon
University of South Australia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Briony L. Gliddon.
The FASEB Journal | 2015
Kate A. Parham; Julia R. Zebol; Katie Tooley; Wai Y. Sun; Lachlan M. Moldenhauer; Michaelia P. Cockshell; Briony L. Gliddon; Paul A.B. Moretti; Gabor Tigyi; Stuart M. Pitson; Claudine S. Bonder
Sphingosine 1‐phosphate (S1P) is a bio‐active lipid that can function both extracellularly and intracellularly to mediate a variety of cellular processes. Using lipid affinity matrices and a radiolabeled lipid binding assay, we reveal that S1P directly interacts with the transcription factor peroxisome proliferator‐activated receptor (PPAR) γ. Herein, we show that S1P treatment of human endothelial cells (ECs) activated a luciferase‐tagged PPAR‐γ‐specific gene reporter by ~12‐fold, independent of the S1P receptors. More specifically, in silico docking, gene reporter, and binding assays revealed that His323 of the PPAR‐γ ligand binding domain is important for binding to S1P. PPAR‐γ functions when associated with coregulatory proteins, and herein we identify that peroxisome proliferator‐activated receptor‐γ coactivator 1 (PGC1)β binds to PPAR‐γ in ECs and their progenitors (nonadherent endothelial forming cells) and that the formation of this PPAR‐γ:PGC1β complex is increased in response to S1P. ECs treated with S1P selectively regulated known PPAR‐γ target genes with PGC1β and plasminogen‐activated inhibitor‐1 being increased, no change to adipocyte fatty acid binding protein 2 and suppression of CD36. S1P‐induced in vitro tube formation was significantly attenuated in the presence of the PPAR‐γ antagonist GW9662, and in vivo application of GW9662 also reduced vascular development in Matrigel plugs. Interestingly, activation of PPAR‐γ by the synthetic ligand troglitazone also reduced tube formation in vitro and in vivo. To support this, Sphk1‐/‐ Sphk2+/‐ mice, with low circulating S1P levels, demonstrated a similar reduction in vascular development. Taken together, our data reveal that the transcription factor, PPAR‐γ, is a bona fide intracellular target for S1P and thus suggest that the SlP:PPAR‐γ:PGC1β complex may be a useful target to manipulate neovascularization.—Parham, K. A., Zebol, J. R., Tooley, K. L., Sun, W. Y., Moldenhauer, L. M., Cockshell, M. P., Gliddon, B. L., Moretti, P. A., Tigyi, G., Pitson, S. M., Bonder, C. S. Sphingosine 1‐phosphate is a ligand for peroxisome proliferator‐activated receptor‐γ that regulates neoangiogenesis. FASEB J. 29, 3638‐3653 (2015). www.fasebj.org
Oncotarget | 2016
Heidi A. Neubauer; Duyen H. Pham; Julia R. Zebol; Paul A.B. Moretti; Amanda L. Peterson; Tamara Leclercq; Huasheng Chan; Jason A. Powell; Melissa R. Pitman; Michael S. Samuel; Claudine S. Bonder; Darren J. Creek; Briony L. Gliddon; Stuart M. Pitson
While both human sphingosine kinases (SK1 and SK2) catalyze the generation of the pleiotropic signaling lipid sphingosine 1-phosphate, these enzymes appear to be functionally distinct. SK1 has well described roles in promoting cell survival, proliferation and neoplastic transformation. The roles of SK2, and its contribution to cancer, however, are much less clear. Some studies have suggested an anti-proliferative/pro-apoptotic function for SK2, while others indicate it has a pro-survival role and its inhibition can have anti-cancer effects. Our analysis of gene expression data revealed that SK2 is upregulated in many human cancers, but only to a small extent (up to 2.5-fold over normal tissue). Based on these findings, we examined the effect of different levels of cellular SK2 and showed that high-level overexpression reduced cell proliferation and survival, and increased cellular ceramide levels. In contrast, however, low-level SK2 overexpression promoted cell survival and proliferation, and induced neoplastic transformation in vivo. These findings coincided with decreased nuclear localization and increased plasma membrane localization of SK2, as well as increases in extracellular S1P formation. Hence, we have shown for the first time that SK2 can have a direct role in promoting oncogenesis, supporting the use of SK2-specific inhibitors as anti-cancer agents.
Oncogene | 2014
Duyen H. Pham; Jason A. Powell; Briony L. Gliddon; Paul A.B. Moretti; Anna Tsykin; M Van der Hoek; R Kenyon; Gregory J. Goodall; Stuart M. Pitson
Sphingosine kinase 1 (SK1) is a lipid kinase that catalyses the formation of sphingosine-1-phosphate (S1P). Considerable evidence has implicated elevated cellular SK1 in tumour development, progression and disease severity. In particular, SK1 has been shown to enhance cell survival and proliferation and induce neoplastic transformation. Although S1P has been found to have both cell-surface G-protein-coupled receptors and intracellular targets, the specific downstream pathways mediating oncogenic signalling by SK1 remain poorly defined. Here, using a gene expression array approach, we have demonstrated a novel mechanism whereby SK1 regulates cell survival, proliferation and neoplastic transformation through enhancing expression of transferrin receptor 1 (TFR1). We showed that elevated levels of SK1 enhanced total as well as cell-surface TFR1 expression, resulting in increased transferrin uptake into cells. Notably, we also found that SK1 activation and localization to the plasma membrane, which are critical for its oncogenic effects, are necessary for regulation of TFR1 expression specifically through engagement of the S1P G-protein coupled receptor, S1P2. Furthermore, we showed that blocking TFR1 function with a neutralizing antibody inhibits SK1-induced cell proliferation, survival and neoplastic transformation of NIH3T3 fibroblasts. Similar effects were observed following antagonism of S1P2. Together these findings suggest that TFR1 has an important role in SK1-mediated oncogenesis.
Journal of General Virology | 2016
Jennifer N Clarke; Davies Lk; Julie K. Calvert; Briony L. Gliddon; Al Shujari Wh; Amanda L. Aloia; Karla J. Helbig; Michael R. Beard; Stuart M. Pitson; Jillian M. Carr
Sphingosine kinase (SK) 1 is a host kinase that enhances some viral infections. Here we investigated the ability of SK1 to modulate dengue virus (DENV) infection in vitro. Overexpression of SK1 did not alter DENV infection; however, targeting SK1 through chemical inhibition resulted in reduced DENV RNA and infectious virus release. DENV infection of SK1⁻/ ⁻ murine embryonic fibroblasts (MEFs) resulted in inhibition of infection in an immortalized line (iMEF) but enhanced infection in primary MEFs (1°MEFs). Global cellular gene expression profiles showed expected innate immune mRNA changes in DENV-infected WT but no induction of these responses in SK1⁻/⁻ iMEFs. Reverse transciption PCR demonstrated a low-level induction of IFN-β and poor induction of mRNA for the interferon-stimulated genes (ISGs) viperin, IFIT1 and CXCL10 in DENV-infected SK1⁻/⁻ compared with WT iMEFs. Similarly, reduced induction of ISGs was observed in SK1⁻/⁻ 1°MEFs, even in the face of high-level DENV replication. In both iMEFs and 1°MEFs, DENV infection induced production of IFN-β protein. Additionally, higher basal levels of antiviral factors (IRF7, CXCL10 and OAS1) were observed in uninfected SK1⁻/⁻ iMEFs but not 1°MEFs. This suggests that, in this single iMEF line, lack of SK1 upregulates the basal levels of factors that may protect cells against DENV infection. More importantly, regardless of the levels of DENV replication, all cells that lacked SK1 produced IFN-β but were refractory to induction of ISGs such as viperin, IFIT1 and CXCL10. Based on these findings, we propose new roles for SK1 in affecting innate responses that regulate susceptibility to DENV infection.
American Journal of Physiology-gastrointestinal and Liver Physiology | 2013
Nhung Nguyen; Noga Kozer-Gorevich; Briony L. Gliddon; Adam J. Smolka; Andrew H. A. Clayton; Paul A. Gleeson; Ian R. van Driel
Gastric acid secretion by the H(+)-K(+)-ATPase at the apical surface of activated parietal cells requires luminal K(+) provided by the KCNQ1/KCNE2 K(+) channel. However, little is known about the trafficking and relative spatial distribution of KCNQ1 and H(+)-K(+)-ATPase in resting and activated parietal cells and the capacity of KCNQ1 to control acid secretion. Here we show that inhibition of KCNQ1 activity quickly curtails gastric acid secretion in vivo, even when the H(+)-K(+)-ATPase is permanently anchored in the apical membrane, demonstrating a key role of the K(+) channel in controlling acid secretion. Three-dimensional imaging analysis of isolated mouse gastric units revealed that the majority of KCNQ1 resides in an intracytoplasmic, Rab11-positive compartment in resting parietal cells, distinct from H(+)-K(+)-ATPase-enriched tubulovesicles. Upon activation, there was a significant redistribution of H(+)-K(+)-ATPase and KCNQ1 from intracytoplasmic compartments to the apical secretory canaliculi. Significantly, high Förster resonance energy transfer was detected between H(+)-K(+)-ATPase and KCNQ1 in activated, but not resting, parietal cells. These findings demonstrate that H(+)-K(+)-ATPase and KCNQ1 reside in independent intracytoplasmic membrane compartments, or membrane domains, and upon activation of parietal cells, both membrane proteins are transported, possibly via Rab11-positive recycling endosomes, to apical membranes, where the two molecules are closely physically opposed. In addition, these studies indicate that acid secretion is regulated by independent trafficking of KCNQ1 and H(+)-K(+)-ATPase.
Cancer Research | 2017
Wenying Zhu; Kate E. Jarman; Noor A. Lokman; Heidi A. Neubauer; Lorena Davies; Briony L. Gliddon; Houng Taing; Paul A.B. Moretti; Martin K. Oehler; Melissa R. Pitman; Stuart M. Pitson
Sphingosine kinase 1 (SK1) is a key regulator of the cellular balance between proapoptotic and prosurvival sphingolipids. Oncogenic signaling by SK1 relies on its localization to the plasma membrane, which is mediated by the calcium and integrin binding protein CIB1 via its Ca2+-myristoyl switch function. Here we show that another member of the CIB family, CIB2, plays a surprisingly opposite role to CIB1 in the regulation of SK1 signaling. CIB2 bound SK1 on the same site as CIB1, yet it lacks the Ca2+-myristoyl switch function. As a result, CIB2 blocked translocation of SK1 to the plasma membrane and inhibited its subsequent signaling, which included sensitization to TNFα-induced apoptosis and inhibition of Ras-induced neoplastic transformation. CIB2 was significantly downregulated in ovarian cancer and low CIB2 expression was associated with poor prognosis in ovarian cancer patients. Notably, reintroduction of CIB2 in ovarian cancer cells blocked plasma membrane localization of endogenous SK1, reduced in vitro neoplastic growth and tumor growth in mice, and suppressed cell motility and invasiveness both in vitro and in vivo Consistent with the in vitro synergistic effects between the SK1-specific inhibitor SK1-I and standard chemotherapeutics, expression of CIB2 also sensitized ovarian cancer cells to carboplatin. Together, these findings identify CIB2 as a novel endogenous suppressor of SK1 signaling and potential prognostic marker and demonstrate the therapeutic potential of SK1 in this gynecologic malignancy. Cancer Res; 77(18); 4823-34. ©2017 AACR.
Biology of the Cell | 2011
Priscilla Gunn; Briony L. Gliddon; Sarah L. Londrigan; Andrew M. Lew; Ian R. van Driel; Paul A. Gleeson
Background information. Acid‐secreting gastric parietal cells are polarized epithelial cells that harbour highly abundant and specialized, H+, K+ ATPase‐containing, tubulovesicular membranes in the apical cytoplasm. The Golgi apparatus has been implicated in the biogenesis of the tubulovesicular membranes; however, an unanswered question is how a typical Golgi organization could regulate normal membrane transport within the membrane‐dense cytoplasm of parietal cells.
Biomedical Materials | 2008
Briony L. Gliddon; Nhung Nguyen; Priscilla Gunn; Paul A. Gleeson; Ian R. van Driel
Here we describe a method for the isolation of intact gastric glands from mice and primary culture and transfection of mouse gastric epithelial cells. Collagenase digestion of PBS-perfused mouse stomachs released large intact gastric glands that were plated on a basement membrane matrix. The heterogeneous gland cell cultures typically contain approximately 60% parietal cells. Isolated mouse parietal cells remain viable in culture for up to 5 days and react strongly with an antibody specific to the gastric H(+)/K(+) ATPase. Isolated intact mouse gastric glands and primary cultures of mouse parietal cells respond to the secretagogue, histamine. Typical morphological changes from a resting to an acid-secreting active parietal cell were observed. In resting cultures of mouse parietal cells, the H(+)/K(+) ATPase displayed a cytoplasmic punctate staining pattern consistent with tubulovesicle element structures. Following histamine stimulation, an expansion of internal apical vacuole structures was observed together with a pronounced redistribution of the H(+)/K(+) ATPase from the cytoplasm to the apical vacuoles. A reproducible procedure to express genes of interest exogenously in these cultures of mouse parietal cells was also established. This method combines recombinant adenoviral transduction with magnetic field-assisted transfection resulting in approximately 30% transduced parietal cells. Adenoviral-transduced parietal cells maintain their ability to undergo agonist-induced activation. This protocol will be useful for the isolation, culture and expression of genes in parietal cells from genetically modified mice and as such will be an invaluable tool for studying the complex exocytic and endocytic trafficking events of the H(+)/K(+) ATPase which underpin the regulation of acid secretion.
Oncogene | 2017
Wenying Zhu; Briony L. Gliddon; Kate E. Jarman; Paul A.B. Moretti; Teresa Tin; L V Parise; Joanna M. Woodcock; Jason A. Powell; Andrew Ruszkiewicz; Melissa R. Pitman; Stuart M. Pitson
CIB1 (calcium and integrin binding protein 1) is a small intracellular protein with numerous interacting partners, and hence has been implicated in various cellular functions. Recent studies have revealed emerging roles of CIB1 in regulating cancer cell survival and angiogenesis, although the mechanisms involved have remained largely undefined. In investigating the oncogenic function of CIB1, we initially found that CIB1 is widely up-regulated across a diverse range of cancers, with this upregulation frequently correlating with oncogenic mutations of KRas. Consistent with this, we found that ectopic expression of oncogenic KRas and HRas in cells resulted in elevated CIB1 expression. We previously described the Ca2+-myristoyl switch function of CIB1, and its ability to facilitate agonist-induced plasma membrane localisation of sphingosine kinase 1 (SK1), a location where SK1 is known to elicit oncogenic signalling. Thus, we examined the role this may play in oncogenesis. Consistent with these findings, we demonstrated here that over-expression of CIB1 by itself is sufficient to drive localisation of SK1 to the plasma membrane and enhance the membrane-associated enzymatic activity of SK1, as well as its oncogenic signalling. We subsequently demonstrated that elevated levels of CIB1 resulted in full neoplastic transformation, in a manner dependent on SK1. In agreement with our previous findings that SK1 is a downstream mediator of oncogenic signalling by Ras, we found that targeting CIB1 also inhibited neoplastic growth of cells induced by oncogenic Ras, suggesting an important pro-tumorigenic role for CIB1. Thus, we have demonstrated for the first time a role for CIB1 in neoplastic transformation, and revealed a novel mechanism facilitating oncogenic signalling by Ras and SK1.
Oncogene | 2018
Heidi A. Neubauer; Melinda Tea; Julia R. Zebol; Briony L. Gliddon; Cassandra Stefanidis; Paul A.B. Moretti; Melissa R. Pitman; Maurizio Costabile; Jasreen Kular; Brett W. Stringer; Bryan W. Day; Michael S. Samuel; Claudine S. Bonder; Jason A. Powell; Stuart M. Pitson
While the two mammalian sphingosine kinases, SK1 and SK2, both catalyze the generation of pro-survival sphingosine 1-phosphate (S1P), their roles vary dependent on their different subcellular localization. SK1 is generally found in the cytoplasm or at the plasma membrane where it can promote cell proliferation and survival. SK2 can be present at the plasma membrane where it appears to have a similar function to SK1, but can also be localized to the nucleus, endoplasmic reticulum or mitochondria where it mediates cell death. Although SK2 has been implicated in cancer initiation and progression, the mechanisms regulating SK2 subcellular localization are undefined. Here, we report that SK2 interacts with the intermediate chain subunits of the retrograde-directed transport motor complex, cytoplasmic dynein 1 (DYNC1I1 and -2), and we show that this interaction, particularly with DYNC1I1, facilitates the transport of SK2 away from the plasma membrane. DYNC1I1 is dramatically downregulated in patient samples of glioblastoma (GBM), where lower expression of DYNC1I1 correlates with poorer patient survival. Notably, low DYNC1I1 expression in GBM cells coincided with more SK2 localized to the plasma membrane, where it has been recently implicated in oncogenesis. Re-expression of DYNC1I1 reduced plasma membrane-localized SK2 and extracellular S1P formation, and decreased GBM tumor growth and tumor-associated angiogenesis in vivo. Consistent with this, chemical inhibition of SK2 reduced the viability of patient-derived GBM cells in vitro and decreased GBM tumor growth in vivo. Thus, these findings demonstrate a tumor-suppressive function of DYNC1I1, and uncover new mechanistic insights into SK2 regulation which may have implications in targeting this enzyme as a therapeutic strategy in GBM.