Britt A. Glaunsinger
University of California, Berkeley
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Britt A. Glaunsinger.
Oncogene | 1999
Daniela Gardiol; Christian Kühne; Britt A. Glaunsinger; Siu Sylvia Lee; Ron Javier; Lawrence Banks
Previous studies have shown that the oncogenic HPV E6 proteins form a complex with the human homologue of the Drosophila tumour suppressor protein, discs large (Dlg). This is mediated by the carboxy terminus of the E6 proteins and involves recognition of at least one PDZ domain of Dlg. This region of E6 is not conserved amongst E6 proteins from the low risk papillomavirus types and, hence, binding of HPV E6 proteins to Dlg correlates with the oncogenic potential of these viruses. We have performed studies to investigate the consequences of the interaction between E6 and Dlg. Mutational analysis of both the HPV18 E6 and Dlg proteins has further defined the regions of E6 and Dlg necessary for complex formation. Strikingly, co-expression of wild type HPV18 E6 with Dlg in vitro or in vivo results in a dramatic decrease in the amount of Dlg protein, whereas mutants of E6 which fail to complex with Dlg have minimal effect on Dlg protein levels. The oncogenic HPV16 E6 also decreased the Dlg levels, but this was not observed with the low risk HPV11 E6 protein. Moreover, a region within the first 544 amino acids of Dlg containing the three PDZ domains confers susceptibility to E6 mediated degradation. Finally, treatment of cells with a proteasome inhibitor overrides the capacity of E6 to degrade Dlg. These results demonstrate that Dlg is targeted by high risk HPV E6 proteins for proteasome mediated degradation.
Oncogene | 2000
Britt A. Glaunsinger; Siu Sylvia Lee; Miranda Thomas; Lawrence Banks; Ronald T. Javier
The oncoproteins of small DNA tumor viruses promote tumorigenesis by complexing with cellular factors intimately involved in the control of cell proliferation. The major oncogenic determinants for human adenovirus type 9 (Ad9) and high-risk human papillomaviruses (HPV) are the E4-ORF1 and E6 proteins, respectively. These seemingly unrelated viral oncoproteins are similar in that their transforming activities in cells depend, in part, on a carboxyl-terminal PDZ domain-binding motif which mediates interactions with the cellular PDZ-protein DLG. Here we demonstrated that both Ad9 E4-ORF1 and high-risk HPV E6 proteins also bind to the DLG-related PDZ-protein MAGI-1. These interactions resulted in MAGI-1 being aberrantly sequestered in the cytoplasm by the Ad9 E4-ORF1 protein or being targeted for degradation by high-risk HPV E6 proteins. Transformation-defective mutant viral proteins, however, were deficient for these activities. Our findings indicate that MAGI-1 is a member of a select group of cellular PDZ proteins targeted by both adenovirus E4-ORF1 and high-risk HPV E6 proteins and, in addition, suggest that the tumorigenic potentials of these viral oncoproteins depend, in part, on an ability to inhibit the function of MAGI-1 in cells.
Journal of Virology | 2000
Siu Sylvia Lee; Britt A. Glaunsinger; Fiamma Mantovani; Lawrence Banks; Ronald T. Javier
ABSTRACT A general theme that has emerged from studies of DNA tumor viruses is that otherwise unrelated oncoproteins encoded by these viruses often target the same important cellular factors. Major oncogenic determinants for human adenovirus type 9 (Ad9) and high-risk human papillomaviruses (HPV) are the E4-ORF1 and E6 oncoproteins, respectively, and although otherwise unrelated, both of these viral proteins possess a functional PDZ domain-binding motif that is essential for their transforming activity and for binding to the PDZ domain-containing and putative tumor suppressor protein DLG. We report here that the PDZ domain-binding motifs of Ad9 E4-ORF1 and high-risk HPV-18 E6 also mediate binding to the widely expressed cellular factor MUPP1, a large multi-PDZ domain protein predicted to function as an adapter in signal transduction. With regard to the consequences of these interactions in cells, we showed that Ad9 E4-ORF1 aberrantly sequesters MUPP1 within the cytoplasm of cells whereas HPV-18 E6 targets this cellular protein for degradation. These effects were specific because mutant viral proteins unable to bind MUPP1 lack these activities. From these results, we propose that the multi-PDZ domain protein MUPP1 is involved in negatively regulating cellular proliferation and that the transforming activities of two different viral oncoproteins depend, in part, on their ability to inactivate this cellular factor.
Molecular Cell | 2004
Britt A. Glaunsinger; Don Ganem
The stimulation of host gene expression by lytic gene products of Kaposis sarcoma-associated herpesvirus (KSHV) has been proposed to play a critical role in KS development. We show, however, that lytic KSHV infection strongly inhibits host gene expression early in infection by accelerating global mRNA turnover. This function is mediated by KSHV ORF37, a homolog of a DNA exonuclease widely present in other herpesviruses but which in KSHV has uniquely evolved additional functions that mediate its participation in RNA degradation. The ability of KSHV to inhibit host gene expression has important implications for models of KS pathogenesis that invoke activation of host transcription in lytically infected cells as a source of angiogenic or oncogenic factors.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Martin Rowe; Britt A. Glaunsinger; Daphne van Leeuwen; Jianmin Zuo; David Sweetman; Don Ganem; Jaap M. Middeldorp; Emmanuel J. H. J. Wiertz; Maaike E. Ressing
Relatively little is known about immune evasion during the productive phase of infection by the γ1-herpesvirus Epstein–Barr virus (EBV). The use of a unique system to isolate cells in lytic cycle allowed us to identify a host shutoff function operating in productively EBV-infected B cells. This impairment of protein synthesis results from mRNA degradation induced upon expression of the early lytic-cycle gene product BGLF5. Recently, a γ2-herpesvirus, Kaposi sarcoma herpesvirus, has also been shown to encode a host shutoff function, indicating that host shutoff appears to be a general feature of γ-herpesviruses. One of the consequences of host shutoff is a block in the synthesis of HLA class I and II molecules, reflected by reduced levels of these antigen-presenting complexes at the surface of cells in EBV lytic cycle. This effect could lead to escape from T cell recognition and elimination of EBV-producing cells, thereby allowing generation of viral progeny in the face of memory T cell responses.
Oncogene | 2001
Miranda Thomas; Britt A. Glaunsinger; David Pim; Ron Javier; Lawrence Banks
It has recently been shown that the high-risk human papillomavirus (HPV) E6 proteins can target the PDZ-domain containing proteins, Dlg, MUPP-1, MAGI-1 and hScrib for proteasome-mediated degradation. However, the E6 proteins from HPV-16 and HPV-18 (the two most common high-risk virus types) differ in their ability to target these proteins in a manner that correlates with their malignant potential. To investigate the underlying mechanisms for this, we have mutated HPV-16 and HPV-18 E6s to give each protein the others PDZ-binding motif. Analysis of these mutants shows that the greater ability of HPV-18 E6 to bind to these proteins and to target them for degradation is indeed due to a single amino acid difference. Using a number of assays, we show that the E6 proteins interact specifically with only one of the five PDZ domains of MAGI-1, and this is the first interaction described for this particular PDZ domain. We also show that the guanylate kinase homology domain and the regions of MAGI-1 downstream of amino acid 733 are not required for the degradation of MAGI-1. Finally, in a series of comparative analyses, we show that the degradation of MAGI-1 occurs through a different mechanism from that used by the E6 protein to induce the degradation of Dlg and p53.
PLOS Biology | 2009
Yeon Lee; Britt A. Glaunsinger
Inhibition of host cell gene expression by the human herpesvirus KSHV occurs via a novel mechanism involving polyadenylation-linked RNA turnover.
Plant Physiology | 1997
Donald E. Nelson; Britt A. Glaunsinger; Hans J. Bohnert
Calreticulin (CRT) is a calcium-binding protein in the endoplasmic reticulum (ER) with an established role as a molecular chaperone. An additional function in signal transduction, specifically in calcium distribution, is suggested but not proven. We have analyzed the expression pattern of Arabidopsis thaliana CRTs for a comparison with these proposed roles. Three CRT genes were expressed, with identities of the encoded proteins ranging from 54 to 86%. Protein motifs with established functions found in CRTs of other species were conserved. CRT was found in all of the cells in low amounts, whereas three distinct floral tissues showed abundant expression: secreting nectaries, ovules early in development, and a set of subepidermal cells near the abaxial surface of the anther. Localization in the developing endosperm, which is characterized by high protein synthesis rates, can be reconciled with a specific chaperone function. Equally, nectar production and secretion, a developmental stage marked by abundant ER, may require abundant CRT to accommodate the traffic of secretory proteins through the ER. Localization of CRT in the anthers, which are degenerating at the time of maximum expression of CRT, cannot easily be reconciled with a chaperone function but may indicate a role for CRT in anther maturation or dehiscence.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Zhe Ma; Sarah R. Jacobs; John A. West; Charles M. Stopford; Zoe H. Davis; Glen N. Barber; Britt A. Glaunsinger; Dirk P. Dittmer; Blossom Damania
Significance Kaposi’s sarcoma-associated herpesvirus (KSHV) is a DNA virus that is linked to several human malignancies. The cGMP-AMP synthase (cGAS) and stimulator of interferon genes (STING) pathway is able to detect KSHV during primary infection and regulates the reactivation of KSHV from latency. We screened KSHV proteins for their ability to inhibit this pathway and block IFN-β activation. One KSHV protein, vIRF1, inhibited this pathway by preventing STING from interacting with TBK1 and inhibiting STING’s phosphorylation and concomitant activation. Moreover, depletion of vIRF1 in the context of KSHV infection prevented efficient viral reactivation and replication, and increased the host IFN response to KSHV. Collectively, our results demonstrate that the modulation of this pathway is important for viral transmission and the lifelong persistence of gammaherpesviruses in the human population. Infection of cells with DNA viruses triggers innate immune responses mediated by DNA sensors. cGMP-AMP synthase (cGAS) is a key DNA sensor that produces the cyclic dinucleotide cGMP-AMP (cGAMP) upon activation, which binds to and activates stimulator of interferon genes (STING), leading to IFN production and an antiviral response. Kaposi’s sarcoma-associated herpesvirus (KSHV) is a DNA virus that is linked to several human malignancies. We report that KSHV infection activates the cGAS-STING pathway, and that cGAS and STING also play an important role in regulating KSHV reactivation from latency. We screened KSHV proteins for their ability to inhibit this pathway and identified six viral proteins that block IFN-β activation through this pathway. This study is the first report identifying multiple viral proteins encoded by a human DNA virus that inhibit the cGAS-STING DNA sensing pathway. One such protein, viral interferon regulatory factor 1 (vIRF1), targets STING by preventing it from interacting with TANK binding kinase 1 (TBK1), thereby inhibiting STING’s phosphorylation and concomitant activation, resulting in an inhibition of the DNA sensing pathway. Our data provide a unique mechanism for the negative regulation of STING-mediated DNA sensing. Moreover, the depletion of vIRF1 in the context of KSHV infection prevented efficient viral reactivation and replication, and increased the host IFN response to KSHV. The vIRF1-expressing cells also inhibited IFN-β production following infection with DNA pathogens. Collectively, our results demonstrate that gammaherpesviruses encode inhibitors that block cGAS-STING–mediated antiviral immunity, and that modulation of this pathway is important for viral transmission and the lifelong persistence of herpesviruses in the human population.
Journal of Virology | 2005
Britt A. Glaunsinger; Leonard Chavez; Don Ganem
ABSTRACT The Kaposis sarcoma-associated herpesvirus (KSHV) SOX protein, encoded by ORF37, promotes shutoff of host cell gene expression during lytic viral replication by dramatically impairing mRNA accumulation. SOX is the KSHV homolog of the alkaline exonuclease of other herpesviruses, which has been shown to function as a DNase involved in processing and packaging the viral genome. Although the exonuclease activity of these proteins is widely conserved across all herpesviruses, the host shutoff activity observed for KSHV SOX is not. We show here that SOX expression sharply reduces the half-life of target mRNAs. Extensive mutational analysis reveals that the DNase and host shutoff activities of SOX are genetically separable. Lesions affecting the DNase activity cluster in conserved regions of the protein, but residues critical for mRNA degradation are not conserved across the viral family. Additionally, we present evidence suggesting that the two different functions of SOX occur within distinct cellular compartments—DNase activity in the nucleus and host shutoff activity in the cytoplasm.
Collaboration
Dive into the Britt A. Glaunsinger's collaboration.
International Centre for Genetic Engineering and Biotechnology
View shared research outputs