Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Britta Brügger is active.

Publication


Featured researches published by Britta Brügger.


Cell | 2006

Molecular Anatomy of a Trafficking Organelle

Shigeo Takamori; Matthew Holt; Katinka Stenius; Edward A. Lemke; Mads Grønborg; Dietmar Riedel; Henning Urlaub; Stephan Schenck; Britta Brügger; Philippe Ringler; Shirley A. Müller; Burkhard Rammner; Frauke Gräter; Jochen S. Hub; Bert L. de Groot; Gottfried Mieskes; Yoshinori Moriyama; Jürgen Klingauf; Helmut Grubmüller; John E. Heuser; Felix T. Wieland; Reinhard Jahn

Membrane traffic in eukaryotic cells involves transport of vesicles that bud from a donor compartment and fuse with an acceptor compartment. Common principles of budding and fusion have emerged, and many of the proteins involved in these events are now known. However, a detailed picture of an entire trafficking organelle is not yet available. Using synaptic vesicles as a model, we have now determined the protein and lipid composition; measured vesicle size, density, and mass; calculated the average protein and lipid mass per vesicle; and determined the copy number of more than a dozen major constituents. A model has been constructed that integrates all quantitative data and includes structural models of abundant proteins. Synaptic vesicles are dominated by proteins, possess a surprising diversity of trafficking proteins, and, with the exception of the V-ATPase that is present in only one to two copies, contain numerous copies of proteins essential for membrane traffic and neurotransmitter uptake.


Science | 2008

Ceramide Triggers Budding of Exosome Vesicles into Multivesicular Endosomes

Katarina Trajkovic; Chieh Hsu; Salvatore Chiantia; Lawrence Rajendran; Dirk Wenzel; Felix T. Wieland; Petra Schwille; Britta Brügger; Mikael Simons

Intraluminal vesicles of multivesicular endosomes are either sorted for cargo degradation into lysosomes or secreted as exosomes into the extracellular milieu. The mechanisms underlying the sorting of membrane into the different populations of intraluminal vesicles are unknown. Here, we find that cargo is segregated into distinct subdomains on the endosomal membrane and that the transfer of exosome-associated domains into the lumen of the endosome did not depend on the function of the ESCRT (endosomal sorting complex required for transport) machinery, but required the sphingolipid ceramide. Purified exosomes were enriched in ceramide, and the release of exosomes was reduced after the inhibition of neutral sphingomyelinases. These results establish a pathway in intraendosomal membrane transport and exosome formation.


Journal of Biological Chemistry | 2011

Biochemical and Morphological Properties of Hepatitis C Virus Particles and Determination of Their Lipidome

Andreas Merz; Gang Long; Marie-Sophie Hiet; Britta Brügger; Petr Chlanda; Patrice André; Felix T. Wieland; Jacomine Krijnse-Locker; Ralf Bartenschlager

A hallmark of hepatitis C virus (HCV) particles is their association with host cell lipids, most notably lipoprotein components. It is thought that this property accounts for the low density of virus particles and their large heterogeneity. However, the composition of infectious virions and their biochemical and morphological properties are largely unknown. We developed a system in which the envelope glycoprotein E2 was N-terminally tagged with a FLAG epitope. This virus, designated Jc1E2FLAG, produced infectivity titers to wild type levels and allowed affinity purification of virus particles that were analyzed for their protein and lipid composition. By using mass spectrometry, we found the lipid composition of Jc1E2FLAG particles to resemble the one very low- and low density-lipoprotein with cholesteryl esters accounting for almost half of the total HCV lipids. Thus, HCV particles possess a unique lipid composition that is very distinct from all other viruses analyzed so far and from the human liver cells in which HCV was produced. By electron microscopy (EM), we found purified Jc1E2FLAG particles to be heterogeneous, mostly spherical structures, with an average diameter of about 73 nm. Importantly, the majority of E2-containing particles also contained apoE on their surface as assessed by immuno-EM. Taken together, we describe a rapid and efficient system for the production of large quantities of affinity-purified HCV allowing a comprehensive analysis of the infectious virion, including the determination of its lipid composition.


Nature Genetics | 2007

Axonal loss and neuroinflammation caused by peroxisome-deficient oligodendrocytes.

Celia M. Kassmann; Corinna Lappe-Siefke; Myriam Baes; Britta Brügger; Alexander Mildner; Hauke B. Werner; Oliver Natt; Thomas Michaelis; Marco Prinz; Jens Frahm; Klaus-Armin Nave

Oligodendrocytes myelinate axons for rapid impulse conduction and contribute to normal axonal functions in the central nervous system. In multiple sclerosis, demyelination is caused by autoimmune attacks, but the role of oligodendroglial cells in disease progression and axon degeneration is unclear. Here we show that oligodendrocytes harbor peroxisomes whose function is essential for maintaining white matter tracts throughout adult life. By selectively inactivating the import factor PEX5 in myelinating glia, we generated mutant mice that developed normally, but within several months showed ataxia, tremor and premature death. Absence of functional peroxisomes from oligodendrocytes caused widespread axonal degeneration and progressive subcortical demyelination, but did not interfere with glial survival. Moreover, it caused a strong proinflammatory milieu and, unexpectedly, the infiltration of B and activated CD8+ T cells into brain lesions. We conclude that peroxisomes provide oligodendrocytes with an essential neuroprotective function against axon degeneration and neuroinflammation, which is relevant for human demyelinating diseases.


Journal of Cell Biology | 2009

The genetic interactome of prohibitins: coordinated control of cardiolipin and phosphatidylethanolamine by conserved regulators in mitochondria.

Christof Osman; Mathias Haag; Christoph Potting; Jonathan Rodenfels; Phat Vinh Dip; Felix T. Wieland; Britta Brügger; Benedikt Westermann; Thomas Langer

Prohibitin ring complexes in the mitochondrial inner membrane regulate cell proliferation as well as the dynamics and function of mitochondria. Although prohibitins are essential in higher eukaryotes, prohibitin-deficient yeast cells are viable and exhibit a reduced replicative life span. Here, we define the genetic interactome of prohibitins in yeast using synthetic genetic arrays, and identify 35 genetic interactors of prohibitins (GEP genes) required for cell survival in the absence of prohibitins. Proteins encoded by these genes include members of a conserved protein family, Ups1 and Gep1, which affect the processing of the dynamin-like GTPase Mgm1 and thereby modulate cristae morphogenesis. We show that Ups1 and Gep1 regulate the levels of cardiolipin and phosphatidylethanolamine in mitochondria in a lipid-specific but coordinated manner. Lipid profiling by mass spectrometry of GEP-deficient mitochondria reveals a critical role of cardiolipin and phosphatidylethanolamine for survival of prohibitin-deficient cells. We propose that prohibitins control inner membrane organization and integrity by acting as protein and lipid scaffolds.


Nature | 2012

Molecular recognition of a single sphingolipid species by a protein's transmembrane domain.

F.-Xabier Contreras; Andreas M. Ernst; Per Haberkant; Patrik Björkholm; Erik Lindahl; Başak Gönen; Christian Tischer; Arne Elofsson; Gunnar von Heijne; Christoph Thiele; Rainer Pepperkok; Felix T. Wieland; Britta Brügger

Functioning and processing of membrane proteins critically depend on the way their transmembrane segments are embedded in the membrane. Sphingolipids are structural components of membranes and can also act as intracellular second messengers. Not much is known of sphingolipids binding to transmembrane domains (TMDs) of proteins within the hydrophobic bilayer, and how this could affect protein function. Here we show a direct and highly specific interaction of exclusively one sphingomyelin species, SM 18, with the TMD of the COPI machinery protein p24 (ref. 2). Strikingly, the interaction depends on both the headgroup and the backbone of the sphingolipid, and on a signature sequence (VXXTLXXIY) within the TMD. Molecular dynamics simulations show a close interaction of SM 18 with the TMD. We suggest a role of SM 18 in regulating the equilibrium between an inactive monomeric and an active oligomeric state of the p24 protein, which in turn regulates COPI-dependent transport. Bioinformatic analyses predict that the signature sequence represents a conserved sphingolipid-binding cavity in a variety of mammalian membrane proteins. Thus, in addition to a function as second messengers, sphingolipids can act as cofactors to regulate the function of transmembrane proteins. Our discovery of an unprecedented specificity of interaction of a TMD with an individual sphingolipid species adds to our understanding of why biological membranes are assembled from such a large variety of different lipids.


Journal of Biological Chemistry | 2004

The Membrane Domains Occupied by Glycosylphosphatidylinositol-anchored Prion Protein and Thy-1 Differ in Lipid Composition

Britta Brügger; Catriona H. Graham; Iris Leibrecht; Enrico Mombelli; Angela Jen; Felix T. Wieland; Roger J. Morris

Glycosylphosphatidylinositol-anchored prion protein and Thy-1, found in adjacent microdomains or “rafts” on the neuronal surface, traffic very differently and show distinctive differences in their resistance to detergent solubilization. Monovalent immunogold labeling showed that the two proteins were largely clustered in separate domains on the neuronal surface: 86% of prion protein was clustered in domains containing no Thy-1, although 40% of Thy-1 had a few molecules of prion protein associated with it. Only 1% of all clusters contained appreciable levels of both proteins (≤3 immunogold label for both). In keeping with this distribution, immunoaffinity isolation of detergent-resistant membranes (DRMs) using the non-ionic detergent Brij 96 yielded prion protein DRMs with little Thy-1, whereas Thy-1 DRMs contained ∼20% of prion protein. The lipid content of prion protein and Thy-1 DRMs was measured by quantitative nano-electrospray ionization tandem mass spectrometry. In four independent preparations, the lipid content was highly reproducible, with Thy-1 and prion protein DRMs differing markedly from each other and from the total DRM pool from which they were immunoprecipitated. Prion protein DRMs contained significantly more unsaturated, longer chain lipids than Thy-1 DRMs and had 5-fold higher levels of hexosylceramide. The different lipid compositions are in keeping with the different trafficking dynamics and solubility of the two proteins and show that, under the conditions used, DRMs can isolate individual membrane microenvironments. These results further identify unsaturation and glycosylation of lipids as major sources of diversity of raft structure.


Journal of Biological Chemistry | 2010

A Critical Role for Ceramide Synthase 2 in Liver Homeostasis I. ALTERATIONS IN LIPID METABOLIC PATHWAYS

Yael Pewzner-Jung; Hyejung Park; Elad L. Laviad; Liana C. Silva; Sujoy Lahiri; Johnny Stiban; Racheli Erez-Roman; Britta Brügger; Timo Sachsenheimer; Felix T. Wieland; Manuel Prieto; Alfred H. Merrill; Anthony H. Futerman

Ceramide is an important lipid signaling molecule that plays critical roles in regulating cell behavior. Ceramide synthesis is surprisingly complex and is orchestrated by six mammalian ceramide synthases, each of which produces ceramides with restricted acyl chain lengths. We have generated a CerS2 null mouse and characterized the changes in the long chain base and sphingolipid composition of livers from these mice. Ceramide and downstream sphingolipids were devoid of very long (C22–C24) acyl chains, consistent with the substrate specificity of CerS2 toward acyl-CoAs. Unexpectedly, C16-ceramide levels were elevated, and as a result, total ceramide levels were unaltered; however, C16-ceramide synthesis in vitro was not increased. Levels of sphinganine were also significantly elevated, by up to 50-fold, reminiscent of the effect of the ceramide synthase inhibitor, fumonisin B1. With the exceptions of glucosylceramide synthase and neutral sphingomyelinase 2, none of the other enzymes tested in either the sphingolipid biosynthetic or degradative pathways were significantly changed. Total glycerophospholipid and cholesterol levels were unaltered, although there was a marked elevation in C18:1 and C18:2 fatty acids in phosphatidylethanolamine, concomitant with a reduction in C18:0 and C20:4 fatty acids. Finally, differences were observed in the biophysical properties of lipid extracts isolated from liver microsomes, with membranes from CerS2 null mice displaying higher membrane fluidity and showing morphological changes. Together, these results demonstrate novel modes of cross-talk and regulation between the various branches of lipid metabolic pathways upon inhibition of very long acyl chain ceramide synthesis.


The EMBO Journal | 1999

Maturation of the axonal plasma membrane requires upregulation of sphingomyelin synthesis and formation of protein–lipid complexes

Maria Dolores Ledesma; Britta Brügger; Carsten Bünning; Felix T. Wieland; Carlos G. Dotti

Neuronal maturation is a gradual process; first axons and dendrites are established as distinct morphological entities; next the different intracellular organization of these processes occurs; and finally the specialized plasma membrane domains of these two compartments are formed. Only when this has been accomplished does proper neuronal function take place. In this work we present evidence that the correct distribution of a class of axonal membrane proteins requires a mechanism which involves formation of protein–lipid (sphingomyelin/cholesterol) detergent‐insoluble complexes (DIGs). Using biochemistry and immunofluorescence microscopy we now show that in developing neurons the randomly distributed Thy‐1 does not interact with lipids into DIGs (in fully developed neurons the formation of such complexes is essential for the correct axonal targeting of this protein). Using lipid mass spectrometry and thin layer chromatography we show that the DIG lipid missing in the developing neurons is sphingomyelin, but not cholesterol or glucosylceramide. Finally, by increasing the intracellular levels of sphingomyelin in the young neurons the formation of Thy‐1/DIGs was induced and, consistent with a role in sorting, proper axonal distribution was facilitated. These results emphasize the role of sphingomyelin in axonal, and therefore, neuronal maturation.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Membrane curvature induced by Arf1-GTP is essential for vesicle formation.

Rainer Beck; Zhe Sun; Frank Adolf; Chistoph Rutz; Jochen Bassler; Klemens Wild; Irmgard Sinning; Ed Hurt; Britta Brügger; Julien Béthune; Felix T. Wieland

The GTPase Arf1 is considered as a molecular switch that regulates binding and release of coat proteins that polymerize on membranes to form transport vesicles. Here, we show that Arf1-GTP induces positive membrane curvature and find that the small GTPase can dimerize dependent on GTP. Investigating a possible link between Arf dimerization and curvature formation, we isolated an Arf1 mutant that cannot dimerize. Although it was capable of exerting the classical role of Arf1 as a coat receptor, it could not mediate the formation of COPI vesicles from Golgi-membranes and was lethal when expressed in yeast. Strikingly, this mutant was not able to deform membranes, suggesting that GTP-induced dimerization of Arf1 is a critical step inducing membrane curvature during the formation of coated vesicles.

Collaboration


Dive into the Britta Brügger's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge