Britta C. Urban
Liverpool School of Tropical Medicine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Britta C. Urban.
PLOS ONE | 2011
Lucy Ochola; Bethsheba R. Siddondo; Harold Ocholla; Siana Nkya; Eva Kimani; Thomas N. Williams; Johnstone Makale; Anne Liljander; Britta C. Urban; Peter C. Bull; Tadge Szestak; Kevin Marsh; Alister Craig
Our understanding of the basis of severe disease in malaria is incomplete. It is clear that pathology is in part related to the pro-inflammatory nature of the host response but a number of other factors are also thought to be involved, including the interaction between infected erythrocytes and endothelium. This is a complex system involving several host receptors and a major parasite-derived variant antigen (PfEMP1) expressed on the surface of the infected erythrocyte membrane. Previous studies have suggested a role for ICAM-1 in the pathology of cerebral malaria, although these have been inconclusive. In this study we have examined the cytoadherence patterns of 101 patient isolates from varying clinical syndromes to CD36 and ICAM-1, and have used variant ICAM-1 proteins to further characterise this adhesive phenotype. Our results show that increased binding to CD36 is associated with uncomplicated malaria while ICAM-1 adhesion is raised in parasites from cerebral malaria cases.
Clinical and Experimental Immunology | 2014
L. Afran; M. Garcia Knight; Eunice Nduati; Britta C. Urban; Robert S. Heyderman; Sarah Rowland-Jones
Through the successful implementation of policies to prevent mother‐to‐child‐transmission (PMTCT) of HIV‐1 infection, children born to HIV‐1‐infected mothers are now much less likely to acquire HIV‐1 infection than previously. Nevertheless, HIV‐1‐exposed uninfected (HEU) children have substantially increased morbidity and mortality compared with children born to uninfected mothers (unexposed uninfected, UU), predominantly from infectious causes. Moreover, a range of phenotypical and functional immunological differences between HEU and UU children has been reported. As the number of HEU children continues to increase worldwide, two questions with clear public health importance need to be addressed: first, does exposure to HIV‐1 and/or ARTu2005in utero or during infancy have direct immunological consequences, or are these poor outcomes simply attributable to the obvious disadvantages of being born into an HIV‐affected household? Secondly, can we expect improved maternal care and ART regimens during and after pregnancy, together with optimized infant immunization schedules, to reduce the excess morbidity and mortality of HEU children?
Nature Medicine | 2013
Pierre Guermonprez; Julie Helft; Carla Claser; Stephanie Deroubaix; Henry Karanje; Anna Gazumyan; Guillaume Darasse-Jèze; Stephanie B. Telerman; Gaëlle Breton; Heidi A. Schreiber; Natalia Frias-Staheli; Eva Billerbeck; Marcus Dorner; Charles M. Rice; Alexander Ploss; Florian Klein; Melissa Swiecki; Marco Colonna; Alice O. Kamphorst; Matthew M. Meredith; Rachel E. Niec; Constantin N. Takacs; Fadi Mikhail; Aswin Hari; David Bosque; Tom Eisenreich; Miriam Merad; Yan Shi; Florent Ginhoux; Laurent Rénia
Innate sensing mechanisms trigger a variety of humoral and cellular events that are essential to adaptive immune responses. Here we describe an innate sensing pathway triggered by Plasmodium infection that regulates dendritic cell homeostasis and adaptive immunity through Flt3 ligand (Flt3l) release. Plasmodium-induced Flt3l release in mice requires Toll-like receptor (TLR) activation and type I interferon (IFN) production. We found that type I IFN supports the upregulation of xanthine dehydrogenase, which metabolizes the xanthine accumulating in infected erythrocytes to uric acid. Uric acid crystals trigger mast cells to release soluble Flt3l from a pre-synthesized membrane-associated precursor. During infection, Flt3l preferentially stimulates expansion of the CD8-α+ dendritic cell subset or its BDCA3+ human dendritic cell equivalent and has a substantial impact on the magnitude of T cell activation, mostly in the CD8+ compartment. Our findings highlight a new mechanism that regulates dendritic cell homeostasis and T cell responses to infection.
Science Translational Medicine | 2015
Caroline Ogwang; Domtila Kimani; Nick J. Edwards; Rachel Roberts; Jedidah Mwacharo; Georgina Bowyer; Carly M. Bliss; Susanne H. Hodgson; Patricia Njuguna; Nicola K. Viebig; Alfredo Nicosia; Evelyn Gitau; Sandy Douglas; Joe Illingworth; Kevin Marsh; Alison M. Lawrie; Egeruan B. Imoukhuede; Katie Ewer; Britta C. Urban; Adrian V. S. Hill; Philip Bejon
Vaccination with the recombinant viral vectors chimpanzee adenovirus 63 followed by modified vaccinia Ankara both encoding the malaria sequence ME-TRAP conferred 67% protection against infection with Plasmodium falciparum in Kenyan adults. Setting a TRAP for the malaria parasite Previous studies have shown that T cells induced by vaccines can clear liver-stage malaria parasites, but these vaccines have not been effective in field trials. In a new study, Bejon et al. randomly allocated 121 healthy adult male volunteers to receive either a T cell–inducing vaccine or rabies vaccine as a control. They gave antimalarials to clear malaria parasites from the subjects’ blood and then did frequent blood tests to identify new infections with the malaria parasite Plasmodium falciparum. They found that the volunteers receiving the T cell vaccine had a 67% reduction in the risk of malaria infection during 8 weeks of follow-up. Protective immunity to the liver stage of the malaria parasite can be conferred by vaccine-induced T cells, but no subunit vaccination approach based on cellular immunity has shown efficacy in field studies. We randomly allocated 121 healthy adult male volunteers in Kilifi, Kenya, to vaccination with the recombinant viral vectors chimpanzee adenovirus 63 (ChAd63) and modified vaccinia Ankara (MVA), both encoding the malaria peptide sequence ME-TRAP (the multiple epitope string and thrombospondin-related adhesion protein), or to vaccination with rabies vaccine as a control. We gave antimalarials to clear parasitemia and conducted PCR (polymerase chain reaction) analysis on blood samples three times a week to identify infection with the malaria parasite Plasmodium falciparum. On Cox regression, vaccination reduced the risk of infection by 67% [95% confidence interval (CI), 33 to 83%; P = 0.002] during 8 weeks of monitoring. T cell responses to TRAP peptides 21 to 30 were significantly associated with protection (hazard ratio, 0.24; 95% CI, 0.08 to 0.75; P = 0.016).
The Journal of Infectious Diseases | 2011
Eunice Nduati; Agnes Gwela; Henry Karanja; Cleopatra K Mugyenyi; Jean Langhorne; Kevin Marsh; Britta C. Urban
Malaria-specific antibody responses in children often appear to be short-lived but the mechanisms underlying this phenomenon are not well understood. In this study, we investigated the relationship between the B-cell activating factor (BAFF) and its receptors expressed on B cells with antibody responses during and after acute malaria in children. Our results demonstrate that BAFF plasma levels increased during acute malarial disease and reflected disease severity. The expression profiles for BAFF receptors on B cells agreed with rapid activation and differentiation of a proportion of B cells to plasma cells. However, BAFF receptor (BAFF-R) expression was reduced on all peripheral blood B cells during acute infection, but those children with the highest level of BAFF-R expression on B cells maintained schizont-specific immunoglobin G (IgG) over a period of 4 months, indicating that dysregulation of BAFF-R expression on B cells may contribute to short-lived antibody responses to malarial antigens in children. In summary, this study suggests a potential role for BAFF during malaria disease, both as a marker for disease severity and in shaping the differentiation pattern of antigen-specific B cells.
PLOS ONE | 2010
Eunice Nduati; Dorothy H. L. Ng; Francis M. Ndungu; Peter J Gardner; Britta C. Urban; Jean Langhorne
B cell and plasma cell responses take place in lymphoid organs, but because of the inaccessibility of these organs, analyses of human responses are largely performed using peripheral blood mononuclear cells (PBMC). To determine whether PBMC are a useful source of memory B cells and plasma cells in malaria, and whether they reflect Plasmodium-specific B cell responses in spleen or bone marrow, we have investigated these components of the humoral response in PBMC using a model of Plasmodium chabaudi blood-stage infections in C57BL/6 mice. We detected memory B cells, defined as isotype-switched IgD− IgM− CD19+ B cells, and low numbers of Plasmodium chabaudi Merozoite Surface Protein-1 (MSP1)-specific memory B cells, in PBMC at all time points sampled for up to 90 days following primary or secondary infection. By contrast, we only detected CD138+ plasma cells and MSP1-specific antibody-secreting cells within a narrow time frame following primary (days 10 to 25) or secondary (day 10) infection. CD138+ plasma cells in PBMC at these times expressed CD19, B220 and MHC class II, suggesting that they were not dislodged bone-marrow long-lived plasma cells, but newly differentiated migratory plasmablasts migrating to the bone marrow; thus reflective of an ongoing or developing immune response. Our data indicates that PBMC can be a useful source for malaria-specific memory B cells and plasma cells, but extrapolation of the results to human malaria infections suggests that timing of sampling, particularly for plasma cells, may be critical. Studies should therefore include multiple sampling points, and at times of infection/immunisation when the B-cell phenotypes of interest are likely to be found in peripheral blood.
Infection and Immunity | 2011
Pablo Giusti; Britta C. Urban; Giada Frascaroli; Letusa Albrecht; Anna Tinti; Marita Troye-Blomberg; Stefania Varani
ABSTRACT Acute and chronic Plasmodium falciparum infections alter the immune competence of the host possibly through changes in dendritic cell (DC) functionality. DCs are the most potent activators of T cells, and migration is integral to their function. Mature DCs express lymphoid chemokine receptors (CCRs), expression of which enables them to migrate to the lymph nodes, where they encounter naïve T cells. The present study aimed to investigate the impact of the synthetic analog to malaria parasite pigment hemozoin, i.e., β-hematin, or infected erythrocytes (iRBCs) on the activation status of human monocyte-derived DCs and on their expression of CCRs. Human monocyte-derived DCs partially matured upon incubation with β-hematin as indicated by an increased expression of CD80 and CD83. Both β-hematin and iRBCs provoked the release of proinflammatory and anti-inflammatory cytokines, such as interleukin-6 (IL-6), IL-10, and tumor necrosis factor alpha, but not IL-12, and induced upregulation of the lymphoid chemokine receptor CXCR4, which was coupled to an increased migration to lymphoid ligands. Taken together, these results suggest that the partial and transient maturation of human myeloid DCs upon stimulation with malaria parasite-derived products and the increased IL-10 but lack of IL-12 secretion may lead to suboptimal activation of T cells. This may in turn lead to impaired adaptive immune responses and therefore insufficient clearance of the parasites.
The Journal of Infectious Diseases | 2014
Symon M. Kariuki; Evelyn Gitau; Samson Gwer; Henry Karanja; Eddie Chengo; Michael Kazungu; Britta C. Urban; Charles R. Newton
Background.u2003The diagnosis of cerebral malaria is problematic in malaria-endemic areas because encephalopathy in patients with parasitemia may have another cause. Abnormal retinal findings are thought to increase the specificity of the diagnosis, and the level of histidine-rich protein 2 (HRP2) may reflect the parasite biomass. Methods.u2003We examined the retina and measured plasma HRP2 levels in children with acute nontraumatic encephalopathy in Kenya. Logistic regression, with HRP2 level as an independent variable and World Health Organization–defined cerebral malaria and/or retinopathy as the outcome, was used to calculate malaria-attributable fractions (MAFs) and retinopathy-attributable fractions (RAFs). Results.u2003Of 270 children, 140 (52%) had peripheral parasitemia, 80 (30%) had malaria retinopathy, and 164 (61%) had an HRP2 level of >0 U/mL. During 2006–2011, the incidence of HRP2 positivity among admitted children declined by 49 cases per 100 000 per year (a 78% reduction). An HRP2 level of >0 U/mL had a MAF of 93% for cerebral malaria, with a MAF of 97% observed for HRP2 levels of ≥10 U/mL (the level of the best combined sensitivity and specificity). HRP2 levels of >0 U/mL had a RAF of 77% for features of retinopathy combined, with the highest RAFs for macular whitening (99%), peripheral whitening (98%), and hemorrhages (90%). Conclusion.u2003HRP2 has a high attributable fraction for features of malarial retinopathy, supporting its use in the diagnosis of cerebral malaria. HRP2 thresholds improve the specificity of the definition.
The Journal of Infectious Diseases | 2016
James Scriven; Lisa M. Graham; Charlotte Schutz; Thomas J. Scriba; Katalin A. Wilkinson; Robert J. Wilkinson; David R. Boulware; Britta C. Urban; David G. Lalloo; Graeme Meintjes
Background.u2003Cryptococcal meningitis remains a significant cause of death among human immunodeficiency virus type 1 (HIV)–infected persons in Africa. We aimed to better understand the pathogenesis and identify immune correlates of mortality, particularly the role of monocyte activation. Methods.u2003A prospective cohort study was conducted in Cape Town, South Africa. Patients with a first episode of cryptococcal meningitis were enrolled, and their immune responses were assessed in unstimulated and stimulated blood specimens, using flow cytometry and cytokine analysis. Results.u2003Sixty participants were enrolled (median CD4+ T-cell count, 34 cells/µL). Mortality was 23% (14 of 60 participants) at 14 days and 39% (22 of 57) at 12 weeks. Nonsurvivors were more likely to have an altered consciousness and higher cerebrospinal fluid fungal burden at presentation. Principal component analysis identified an immune signature associated with early mortality, characterized by monocyte deactivation (reduced HLA-DR expression and tumor necrosis factor α response to lipopolysaccharide); increased serum interleukin 6, CXCL10, and interleukin 10 levels; increased neutrophil counts; and decreased T-helper cell type 1 responses. This immune signature remained an independent predictor of early mortality after adjustment for consciousness level and fungal burden and was associated with higher serum titers of cryptococcal glucuronoxylomannan. Conclusions.u2003Cryptococcal-related mortality is associated with monocyte deactivation and an antiinflammatory blood immune signature, possibly due to Cryptococcus modulation of the host immune response. Validation in other cohorts is required.
Journal of Immunology | 2014
Evelyn Gitau; James Tuju; Henry Karanja; Liz Stevenson; Pilar Requena; Eva Kimani; Ally Olotu; Domtila Kimani; Kevin Marsh; Peter C. Bull; Britta C. Urban
The immune response against the variant surface Ag Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is a key component of clinical immunity against malaria. We have investigated the development and maintenance of CD4+ T cell responses to a small semiconserved area of the Duffy binding–like domain (DBL)α–domain of PfEMP1, the DBLα-tag. Young children were followed up longitudinally, and parasites and PBMCs were isolated from 35 patients presenting with an acute case of uncomplicated malaria. The DBLα-tag from the PfEMP1 dominantly expressed by the homologous parasite isolate was cloned and expressed as recombinant protein. The recombinant DBLα-tag was used to activate PBMCs collected from each acute episode and from an annual cross-sectional survey performed after the acute malaria episode. In this article, we report that CD4+ T cell responses to the homologous DBLα-tag were induced in 75% of the children at the time of the acute episode and in 62% of the children at the following cross-sectional survey on average 235 d later. Furthermore, children who had induced DBLα-tag–specific CD4+IL-4+ T cells at the acute episode remained episode free for longer than children who induced other types of CD4+ T cell responses. These results suggest that a wide range of DBLα-tag–specific CD4+ T cell responses were induced in children with mild malaria and, in the case of CD4+IL-4+ T cell responses, were associated with protection from clinical episodes.