Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Britta Langen is active.

Publication


Featured researches published by Britta Langen.


EJNMMI research | 2015

Transcriptional response in normal mouse tissues after i.v. 211At administration - response related to absorbed dose, dose rate, and time

Britta Langen; Nils Rudqvist; Toshima Z. Parris; Emil Schüler; Johan Spetz; Khalil Helou; Eva Forssell-Aronsson

BackgroundIn cancer radiotherapy, knowledge of normal tissue responses and toxicity risks is essential in order to deliver the highest possible absorbed dose to the tumor while maintaining normal tissue exposure at non-critical levels. However, few studies have investigated normal tissue responses in vivo after 211At administration. In order to identify molecular biomarkers of ionizing radiation exposure, we investigated genome-wide transcriptional responses to (very) low mean absorbed doses from 211At in normal mouse tissues.MethodsFemale BALB/c nude mice were intravenously injected with 1.7 kBq 211At and killed after 1 h, 6 h, or 7 days or injected with 105 or 7.5 kBq and killed after 1 and 6 h, respectively. Controls were mock-treated. Total RNA was extracted from tissue samples of kidney cortex and medulla, liver, lungs, and spleen and subjected to microarray analysis. Enriched biological processes were categorized after cellular function based on Gene Ontology terms.ResultsResponses were tissue-specific with regard to the number of significantly regulated transcripts and associated cellular function. Dose rate effects on transcript regulation were observed with both direct and inverse trends. In several tissues, Angptl4, Per1 and Per2, and Tsc22d3 showed consistent transcript regulation at all exposure conditions.ConclusionsThis study demonstrated tissue-specific transcriptional responses and distinct dose rate effects after 211At administration. Transcript regulation of individual genes, as well as cellular responses inferred from enriched transcript data, may serve as biomarkers in vivo. These findings expand the knowledge base on normal tissue responses and may help to evaluate and limit side effects of radionuclide therapy.


The Journal of Nuclear Medicine | 2013

Comparative Analysis of Transcriptional Gene Regulation Indicates Similar Physiologic Response in Mouse Tissues at Low Absorbed Doses from Intravenously Administered 211At

Britta Langen; Nils Rudqvist; Toshima Z. Parris; Emil Schüler; Khalil Helou; Eva Forssell-Aronsson

211At is a promising therapeutic radionuclide because of the nearly optimal biological effectiveness of emitted α-particles. Unbound 211At accumulates in the thyroid gland and in other vital normal tissues. However, few studies have been performed that assess the 211At-induced normal-tissue damage in vivo. Knowledge about the extent and quality of resulting responses in various organs offers a new venue for reducing risks and side effects and increasing the overall well-being of the patient during and after therapy. Methods: Female BALB/c nude mice were injected intravenously with 0.064–42 kBq of 211At or mock-treated, and the kidneys, liver, lungs, and spleen were excised 24 h after injection. A transcriptional gene expression analysis was performed in triplicate using RNA microarray technology. Biological processes associated with regulated transcripts were grouped into 8 main categories with 31 subcategories according to gene ontology terms for comparison of regulatory profiles. Results: A substantial decrease in the total number of regulated transcripts was observed between 0.64 and 1.8 kBq of 211At for all investigated tissues. Few genes were differentially regulated in each tissue at all absorbed doses. In all tissues, most of these genes showed a nonmonotonous dependence on absorbed dose. However, the direction of regulation generally remained uniform for a given gene. Few known radiation-associated genes were regulated on the transcriptional level, and their expression profile generally appeared to be dose-independent and tissue-specific. The regulatory profiles of categorized biological processes were tissue-specific and reflected the shift in regulatory intensity between 0.64 and 1.8 kBq of 211At. The profiles revealed strongly regulated and nonregulated subcategories. Conclusion: The strong regulatory change observed between 0.64 and 1.8 kBq is hypothesized to result not only from low-dose effects in each tissue but also from physiologic responses to ionizing radiation-induced damage to, for example, the 211At-accumulating thyroid gland. The presented results demonstrate the complexity of responses to radionuclides in vivo and highlight the need for further research to also consider physiology in ionizing radiation-induced responses.


EJNMMI research | 2015

Gene expression signature in mouse thyroid tissue after 131 I and 211 At exposure

Nils Rudqvist; Johan Spetz; Emil Schüler; Britta Langen; Toshima Z. Parris; Khalil Helou; Eva Forssell-Aronsson

Background131I and 211At are used in nuclear medicine and accumulate in the thyroid gland and may impact normal thyroid function. The aim of this study was to determine transcriptional profile variations, assess the impact on cellular activity, and identify genes with biomarker properties in thyroid tissue after 131I and 211At administration in mice.MethodsTo further investigate thyroid tissue transcriptional responses to 131I and 211At administration, we generated a new transcriptional dataset that includes re-evaluated raw intensity values from our previous 131I and 211At studies. Differential transcriptional profiles were identified by comparing treated and mock-treated samples using Nexus Expression 3.0 software. Further data analysis was performed using R/Bioconductor and IPA.ResultsA total of 1144 genes were regulated. Hierarchical clustering subdivided the groups into two clusters containing the lowest and highest absorbed dose levels, respectively, and revealed similar transcriptional regulation patterns for many kallikrein-related genes. Twenty-seven of the 1144 genes were recurrently regulated after 131I and 211At exposure and divided into six clusters. Several signalling pathways were affected, including calcium, integrin-linked kinase, and thyroid cancer signalling, and the peroxisomal proliferator-activated receptor network.ConclusionsSubstantial changes in transcriptional regulation were shown in 131I and 211At-treated samples, and 27 genes were identified as potential biomarkers for 131I and 211At exposure. Clustering revealed distinct differences between transcriptional profiles of both similar and different exposures, demonstrating the necessity for better understanding of radiation-induced effects on cellular activity. Additionally, ionizing radiation-induced changes in kallikrein gene expression and identified canonical pathways should be further assessed.


PLOS ONE | 2015

Transcriptional Response in Mouse Thyroid Tissue after 211At Administration: Effects of Absorbed Dose, Initial Dose-Rate and Time after Administration.

Nils Rudqvist; Johan Spetz; Emil Schüler; Toshima Z. Parris; Britta Langen; Khalil Helou; Eva Forssell-Aronsson

Background 211At-labeled radiopharmaceuticals are potentially useful for tumor therapy. However, a limitation has been the preferential accumulation of released 211At in the thyroid gland, which is a critical organ for such therapy. The aim of this study was to determine the effect of absorbed dose, dose-rate, and time after 211At exposure on genome-wide transcriptional expression in mouse thyroid gland. Methods BALB/c mice were i.v. injected with 1.7, 7.5 or 100 kBq 211At. Animals injected with 1.7 kBq were killed after 1, 6, or 168 h with mean thyroid absorbed doses of 0.023, 0.32, and 1.8 Gy, respectively. Animals injected with 7.5 and 100 kBq were killed after 6 and 1 h, respectively; mean thyroid absorbed dose was 1.4 Gy. Total RNA was extracted from pooled thyroids and the Illumina RNA microarray platform was used to determine mRNA levels. Differentially expressed transcripts and enriched GO terms were determined with adjusted p-value <0.01 and fold change >1.5, and p-value <0.05, respectively. Results In total, 1232 differentially expressed transcripts were detected after 211At administration, demonstrating a profound effect on gene regulation. The number of regulated transcripts increased with higher initial dose-rate/absorbed dose at 1 or 6 h. However, the number of regulated transcripts decreased with mean absorbed dose/time after 1.7 kBq 211At administration. Furthermore, similar regulation profiles were seen for groups administered 1.7 kBq. Interestingly, few previously proposed radiation responsive genes were detected in the present study. Regulation of immunological processes were prevalent at 1, 6, and 168 h after 1.7 kBq administration (0.023, 0.32, 1.8 Gy).


The Journal of Nuclear Medicine | 2017

Microarray Studies on 211At Administration in BALB/c Nude Mice Indicate Systemic Effects on Transcriptional Regulation in Nonthyroid Tissues

Britta Langen; Nils Rudqvist; Khalil Helou; Eva Forssell-Aronsson

Targeted α-therapy is a promising treatment option for various types of malignant tumors. Radiolabeled cancer-seeking agents, however, undergo degradation, resulting in a certain percentage of free radionuclide in the body. The radiohalogen 211At accumulates in various tissues, with specifically high uptake in the thyroid. When normal thyroid function is disturbed because of ionizing radiation (IR) exposure, deleterious effects can occur in tissues that depend on thyroid hormone (TH) regulation for normal physiologic function. However, knowledge of systemic effects is still rudimentary. We previously reported similarities in transcriptomic regulation between the thyroid and other tissues despite large differences in absorbed dose from 211At. Here, we present supportive evidence on systemic effects after 211At administration. Methods: Expression microarray data from the kidney cortex and medulla, liver, lungs, and spleen were used from previous studies in which mice were intravenously injected with 0.064–42 kBq of 211At and killed after 24 h or injected with 1.7 kBq of 211At and killed after 1, 6, or 168 h. Controls were mock-treated and killed after 24 h. Literature-based gene signatures were used to evaluate the relative impact from IR- or TH-induced regulation. Thyroid- and TH-associated upstream regulators as well as thyroid-related diseases and functions were generated using functional analysis software. Results: Responses in IR- or TH-associated gene signatures were tissue-specific and varied over time, and the relative impact of each gene signature differed between the investigated tissues. The liver showed a clear dominance of TH-responding genes. In the kidney cortex, kidney medulla, and lungs, the TH-associated signature was detected to at least an extent similar to the IR-associated signature. The spleen was the single tissue showing regulation of only IR-associated signature genes. Various thyroid-associated diseases and functions were inferred from the data: L-triiodothyronine, TH, TH receptor, and triiodothyronine (reverse) were inferred as upstream regulators with differences in incidence and strength of regulation depending on tissue type. Conclusion: These findings indicate that transcriptional regulation in various nonthyroid tissues was—in part—induced by thyroid (hormone)-dependent signaling. Consideration of the systemic context between tissues could contribute to normal tissue risk assessment and planning of remedial measures.


Scientific Reports | 2016

Non-targeted transcriptomic effects upon thyroid irradiation: similarity between in-field and out-of-field responses varies with tissue type

Britta Langen; Nils Rudqvist; Johan Spetz; Janos Swanpalmer; Khalil Helou; Eva Forssell-Aronsson

Non-targeted effects can induce responses in tissues that have not been exposed to ionizing radiation. Despite their relevance for risk assessment, few studies have investigated these effects in vivo. In particular, these effects have not been studied in context with thyroid exposure, which can occur e.g. during irradiation of head and neck tumors. To determine the similarity between in-field and out-of-field responses in normal tissue, we used a partial body irradiation setup with female mice where the thyroid region, the thorax and abdomen, or all three regions were irradiated. After 24 h, transcriptional regulation in the kidney cortex, kidney medulla, liver, lungs, spleen, and thyroid was analyzed using microarray technology. Thyroid irradiation resulted in transcriptional regulation in the kidney medulla and liver that resembled regulation upon direct exposure of these tissues regarding both strength of response and associated biological function. The kidney cortex showed fewer similarities between the setups, while the lungs and spleen showed little similarity between in-field and out-of-field responses. Interestingly, effects were generally not found to be additive. Future studies are needed to identify the molecular mechanisms that mediate these systemic effects, so that they may be used as targets to minimize detrimental side effects in radiotherapy.


PLOS ONE | 2017

Transcriptional response to 131I exposure of rat thyroid gland.

Nils Rudqvist; Johan Spetz; Emil Schüler; Toshima Z. Parris; Britta Langen; Khalil Helou; Eva Forssell-Aronsson

Humans are exposed to 131I in medical diagnostics and treatment but also from nuclear accidents, and better knowledge of the molecular response in thyroid is needed. The aim of the study was to examine the transcriptional response in thyroid tissue 24 h after 131I administration in rats. The exposure levels were chosen to simulate both the clinical situation and the case of nuclear fallout. Thirty-six male rats were i.v. injected with 0–4700 kBq 131I, and killed at 24 h after injection (Dthyroid = 0.0058–3.0 Gy). Total RNA was extracted from individual thyroid tissue samples and mRNA levels were determined using oligonucleotide microarray technique. Differentially expressed transcripts were determined using Nexus Expression 3.0. Hierarchical clustering was performed in the R statistical computing environment. Pathway analysis was performed using the Ingenuity Pathway Analysis tool and the Gene Ontology database. T4 and TSH plasma concentrations were measured using ELISA. Totally, 429 differentially regulated transcripts were identified. Downregulation of thyroid hormone biosynthesis associated genes (e.g. thyroglobulin, thyroid peroxidase, the sodium-iodine symporter) was identified in some groups, and an impact on thyroid function was supported by the pathway analysis. Recurring downregulation of Dbp and Slc47a2 was found. Dbp exhibited a pattern with monotonous reduction of downregulation with absorbed dose at 0.0058–0.22 Gy. T4 plasma levels were increased and decreased in rats whose thyroids were exposed to 0.057 and 0.22 Gy, respectively. Different amounts of injected 131I gave distinct transcriptional responses in the rat thyroid. Transcriptional response related to thyroid function and changes in T4 plasma levels were found already at very low absorbed doses to thyroid.


PLOS ONE | 2018

Deconvolution of expression microarray data reveals 131I-induced responses otherwise undetected in thyroid tissue

Britta Langen; Nils Rudqvist; Johan Spetz; Khalil Helou; Eva Forssell-Aronsson

High-throughput gene expression analysis is increasingly used in radiation research for discovery of damage-related or absorbed dose-dependent biomarkers. In tissue samples, cell type-specific responses can be masked in expression data due to mixed cell populations which can preclude biomarker discovery. In this study, we deconvolved microarray data from thyroid tissue in order to assess possible bias from mixed cell type data. Transcript expression data [GSE66303] from mouse thyroid that received 5.9 Gy from 131I over 24 h (or 0 Gy from mock treatment) were deconvolved by cell frequency of follicular cells and C-cells using csSAM and R and processed with Nexus Expression. Literature-based signature genes were used to assess the relative impact from ionizing radiation (IR) or thyroid hormones (TH). Regulation of cellular functions was inferred by enriched biological processes according to Gene Ontology terms. We found that deconvolution increased the detection rate of significantly regulated transcripts including the biomarker candidate family of kallikrein transcripts. Detection of IR-associated and TH-responding signature genes was also increased in deconvolved data, while the dominating trend of TH-responding genes was reproduced. Importantly, responses in biological processes for DNA integrity, gene expression integrity, and cellular stress were not detected in convoluted data–which was in disagreement with expected dose-response relationships–but upon deconvolution in follicular cells and C-cells. In conclusion, previously reported trends of 131I-induced transcriptional responses in thyroid were reproduced with deconvolved data and usually with a higher detection rate. Deconvolution also resolved an issue with detecting damage and stress responses in enriched data, and may reduce false negatives in other contexts as well. These findings indicate that deconvolution can optimize microarray data analysis of heterogeneous sample material for biomarker screening or other clinical applications.


Nuclear Medicine and Biology | 2018

Time-dependent transcriptional response of GOT1 human small intestine neuroendocrine tumor after 177Lu[Lu]-octreotate therapy

Johan Spetz; Nils Rudqvist; Britta Langen; Toshima Z. Parris; Johanna Dalmo; Emil Schüler; Bo Wängberg; Ola Nilsson; Khalil Helou; Eva Forssell-Aronsson

INTRODUCTION Patients with neuroendocrine tumors expressing somatostatin receptors are often treated with 177Lu[Lu]-octreotate. Despite being highly effective in animal models, 177Lu[Lu]-octreotate-based therapies in the clinical setting can be optimized further. The aims of the study were to identify and elucidate possible optimization venues for 177Lu[Lu]-octreotate tumor therapy by characterizing transcriptional responses in the GOT1 small intestine neuroendocrine tumor model in nude mice. METHODS GOT1-bearing female BALB/c nude mice were intravenously injected with 15 MBq 177Lu[Lu]-octreotate (non-curative amount) or mock-treated with saline solution. Animals were killed 1, 3, 7 or 41 d after injection. Total RNA was extracted from the tumor samples and profiled using Illumina microarray expression analysis. Differentially expressed genes were identified (treated vs. control) and pathway analysis was performed. RESULTS Distribution of differentially expressed transcripts indicated a time-dependent treatment response in GOT1 tumors after 177Lu[Lu]-octreotate administration. Regulation of CDKN1A, BCAT1 and PAM at 1 d after injection was compatible with growth arrest as the initial response to treatment. Upregulation of APOE and BAX at 3 d, and ADORA2A, BNIP3, BNIP3L and HSPB1 at 41 d after injection suggests first activation and then inhibition of the intrinsic apoptotic pathway during tumor regression and regrowth, respectively. CONCLUSION Transcriptional analysis showed radiation-induced apoptosis as an early response after 177Lu[Lu]-octreotate administration, followed by pro-survival transcriptional changes in the tumor during the regrowth phase. Time-dependent changes in cell cycle and apoptosis-related processes suggest different time points after radionuclide therapy when tumor cells may be more susceptible to additional treatment, highlighting the importance of timing when administering multiple therapeutic agents.


EJNMMI research | 2017

Priming increases the anti-tumor effect and therapeutic window of 177Lu-octreotate in nude mice bearing human small intestine neuroendocrine tumor GOT1

Johanna Dalmo; Johan Spetz; Mikael Montelius; Britta Langen; Yvonne Arvidsson; Henrik Johansson; Toshima Z. Parris; Khalil Helou; Bo Wängberg; Ola Nilsson; Maria Ljungberg; Eva Forssell-Aronsson

Collaboration


Dive into the Britta Langen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Khalil Helou

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar

Nils Rudqvist

Sahlgrenska University Hospital

View shared research outputs
Top Co-Authors

Avatar

Johan Spetz

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emil Schüler

Sahlgrenska University Hospital

View shared research outputs
Top Co-Authors

Avatar

Bo Wängberg

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar

Johanna Dalmo

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar

Ola Nilsson

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge