Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Britta Will is active.

Publication


Featured researches published by Britta Will.


Blood | 2012

Stem and progenitor cells in myelodysplastic syndromes show aberrant stage-specific expansion and harbor genetic and epigenetic alterations

Britta Will; Li Zhou; Thomas O. Vogler; Susanna Ben-Neriah; Carolina Schinke; Roni Tamari; Yiting Yu; Tushar D. Bhagat; Sanchari Bhattacharyya; Laura Barreyro; Christoph Heuck; Yonkai Mo; Samir Parekh; Christine McMahon; Andrea Pellagatti; Jacqueline Boultwood; Cristina Montagna; Lewis B. Silverman; Jaroslaw P. Maciejewski; John M. Greally; B. Hilda Ye; Alan F. List; Christian Steidl; Ulrich Steidl; Amit Verma

Even though hematopoietic stem cell (HSC) dysfunction is presumed in myelodysplastic syndrome (MDS), the exact nature of quantitative and qualitative alterations is unknown. We conducted a study of phenotypic and molecular alterations in highly fractionated stem and progenitor populations in a variety of MDS subtypes. We observed an expansion of the phenotypically primitive long-term HSCs (lineage(-)/CD34(+)/CD38(-)/CD90(+)) in MDS, which was most pronounced in higher-risk cases. These MDS HSCs demonstrated dysplastic clonogenic activity. Examination of progenitors revealed that lower-risk MDS is characterized by expansion of phenotypic common myeloid progenitors, whereas higher-risk cases revealed expansion of granulocyte-monocyte progenitors. Genome-wide analysis of sorted MDS HSCs revealed widespread methylomic and transcriptomic alterations. STAT3 was an aberrantly hypomethylated and overexpressed target that was validated in an independent cohort and found to be functionally relevant in MDS HSCs. FISH analysis demonstrated that a very high percentage of MDS HSC (92% ± 4%) carry cytogenetic abnormalities. Longitudinal analysis in a patient treated with 5-azacytidine revealed that karyotypically abnormal HSCs persist even during complete morphologic remission and that expansion of clonotypic HSCs precedes clinical relapse. This study demonstrates that stem and progenitor cells in MDS are characterized by stage-specific expansions and contain epigenetic and genetic alterations.


Blood | 2012

Overexpression of IL-1 receptor accessory protein in stem and progenitor cells and outcome correlation in AML and MDS

Laura Barreyro; Britta Will; Boris Bartholdy; Li Zhou; Tihomira I. Todorova; Robert F. Stanley; Susana Ben-Neriah; Cristina Montagna; Samir Parekh; Andrea Pellagatti; Jacqueline Boultwood; Elisabeth Paietta; Rhett P. Ketterling; Larry D. Cripe; Hugo F. Fernandez; Peter L. Greenberg; Martin S. Tallman; Christian Steidl; Constantine S. Mitsiades; Amit Verma; Ulrich Steidl

Cellular and interpatient heterogeneity and the involvement of different stem and progenitor compartments in leukemogenesis are challenges for the identification of common pathways contributing to the initiation and maintenance of acute myeloid leukemia (AML). Here we used a strategy of parallel transcriptional analysis of phenotypic long-term hematopoietic stem cells (HSCs), short-term HSCs, and granulocyte-monocyte progenitors from individuals with high-risk (-7/7q-) AML and compared them with the corresponding cell populations from healthy controls. This analysis revealed dysregulated expression of 11 genes, including IL-1 receptor accessory protein (IL1RAP), in all leukemic stem and progenitor cell compartments. IL1RAP protein was found to be overexpressed on the surface of HSCs of AML patients, and marked cells with the -7/7q- anomaly. IL1RAP was also overexpressed on HSCs of patients with normal karyotype AML and high-risk myelodysplastic syndrome, suggesting a pervasive role in different disease subtypes. High IL1RAP expression was independently associated with poor overall survival in 3 independent cohorts of AML patients (P = 2.2 × 10(-7)). Knockdown of IL1RAP decreased clonogenicity and increased cell death of AML cells. Our study identified genes dysregulated in stem and progenitor cells in -7/7q- AML, and suggests that IL1RAP may be a promising therapeutic and prognostic target in AML and high-risk myelodysplastic syndrome.


Nature Cell Biology | 2016

Chronic interleukin-1 exposure drives haematopoietic stem cells towards precocious myeloid differentiation at the expense of self-renewal.

Eric M. Pietras; Cristina Mirantes-Barbeito; Sarah Fong; Dirk Loeffler; Larisa V. Kovtonyuk; Si Yi Zhang; Ranjani Lakshminarasimhan; Chih Peng Chin; José Marc Techner; Britta Will; Claus Nerlov; Ulrich Steidl; Markus G. Manz; Timm Schroeder; Emmanuelle Passegué

Haematopoietic stem cells (HSCs) maintain lifelong blood production and increase blood cell numbers in response to chronic and acute injury. However, the mechanism(s) by which inflammatory insults are communicated to HSCs and their consequences for HSC activity remain largely unknown. Here, we demonstrate that interleukin-1 (IL-1), which functions as a key pro-inflammatory ‘emergency’ signal, directly accelerates cell division and myeloid differentiation of HSCs through precocious activation of a PU.1-dependent gene program. Although this effect is essential for rapid myeloid recovery following acute injury to the bone marrow, chronic IL-1 exposure restricts HSC lineage output, severely erodes HSC self-renewal capacity, and primes IL-1-exposed HSCs to fail massive replicative challenges such as transplantation. Importantly, these damaging effects are transient and fully reversible on IL-1 withdrawal. Our results identify a critical regulatory circuit that tailors HSC responses to acute needs, and is likely to underlie deregulated blood homeostasis in chronic inflammation conditions.


Blood | 2009

Effect of the nonpeptide thrombopoietin receptor agonist Eltrombopag on bone marrow cells from patients with acute myeloid leukemia and myelodysplastic syndrome

Britta Will; Masahiro Kawahara; Julia P. Luciano; Ingmar Bruns; Samir Parekh; Connie L. Erickson-Miller; Manuel Aivado; Amit Verma; Ulrich Steidl

Thrombocytopenia is a frequent symptom and clinical challenge in patients with myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). Eltrombopag is a small molecule thrombopoietin receptor agonist that might be a new option to treat thrombocytopenia in these diseases, provided that it does not stimulate malignant hematopoiesis. In this work, we studied the effects of Eltrombopag on proliferation, apoptosis, differentiation, colony formation, and malignant self-renewal of bone marrow mononuclear cells of patients with AML and MDS. Malignant bone marrow mononuclear cells did not show increased proliferation, or increased clonogenic capacity at concentrations of Eltrombopag ranging from 0.1 to 30 microg/mL. On the contrary, we observed a moderate, statistically nonsignificant (P = .18), decrease of numbers of malignant cells (mean, 56%; SD, 28%). Eltrombopag neither led to increased 5-bromo-2-deoxyuridine incorporation, decreased apoptosis, an increase of malignant self-renewal, nor enhanced in vivo engraftment in xenotransplantations. Furthermore, we found that Eltrombopag was capable of increasing megakaryocytic differentiation and formation of normal megakaryocytic colonies in patients with AML and MDS. These results provide a preclinical rationale for further testing of Eltrombopag for treatment of thrombocytopenia in AML and MDS.


Blood | 2012

Eltrombopag inhibits the proliferation of leukemia cells via reduction of intracellular iron and induction of differentiation

Michael Roth; Britta Will; Guillermo Simkin; Swathi Rao Narayanagari; Laura Barreyro; Boris Bartholdy; Roni Tamari; Constantine S. Mitsiades; Amit Verma; Ulrich Steidl

Eltrombopag (EP) is a small-molecule, nonpeptide thrombopoietin receptor (TPO-R) agonist that has been approved recently for the treatment of thrombocytopenia in patients with chronic immune thrombocytopenic purpura. Prior studies have shown that EP stimulates megakaryopoiesis in BM cells from patients with acute myeloid leukemia and myelodysplastic syndrome, and the results also suggested that it may inhibit leukemia cell growth. In the present study, we studied the effects of EP on leukemia cell proliferation and the mechanism of its antiproliferative effects. We found that EP leads to a decreased cell division rate, a block in G(1) phase of cell cycle, and increased differentiation in human and murine leukemia cells. Because EP is species specific in that it can only bind TPO-R in human and primate cells, these findings further suggested that the antileukemic effect is independent of TPO-R. We found that treatment with EP leads to a reduction in free intracellular iron in leukemic cells in a dose-dependent manner. Experimental increase of intracellular iron abrogated the antiproliferative and differentiation-inducing effects of EP, demonstrating that its antileukemic effects are mediated through modulation of intracellular iron content. Finally, determination of EPs antileukemic activity in vivo demonstrated its ability to prolong survival in 2 mouse models of leukemia.


Nature Chemical Biology | 2015

New IDH1 mutant inhibitors for treatment of acute myeloid leukemia

Ujunwa C. Okoye-Okafor; Boris Bartholdy; Jessy Cartier; Enoch Gao; Beth Pietrak; Alan R. Rendina; Cynthia M. Rominger; Chad Quinn; Angela Smallwood; Kenneth Wiggall; Alexander Joseph Reif; Stanley J. Schmidt; Hongwei Qi; Huizhen Zhao; Gerard Joberty; Maria Faelth-Savitski; Marcus Bantscheff; Gerard Drewes; Chaya Duraiswami; Pat Brady; Arthur Groy; Swathi Rao Narayanagari; Iléana Antony-Debré; Kelly Mitchell; Heng Rui Wang; Yun Ruei Kao; Maximilian Christopeit; Luis Carvajal; Laura Barreyro; Elisabeth Paietta

Neomorphic mutations in isocitrate dehydrogenase 1 (IDH1) are driver mutations in acute myeloid leukemia (AML) and other cancers. We report the development of new allosteric inhibitors of mutant IDH1. Crystallographic and biochemical results demonstrated that compounds of this chemical series bind to an allosteric site and lock the enzyme in a catalytically inactive conformation, thereby enabling inhibition of different clinically relevant IDH1 mutants. Treatment of IDH1 mutant primary AML cells uniformly led to a decrease in intracellular 2-HG, abrogation of the myeloid differentiation block and induction of granulocytic differentiation at the level of leukemic blasts and more immature stem-like cells, in vitro and in vivo. Molecularly, treatment with the inhibitors led to a reversal of the DNA cytosine hypermethylation patterns caused by mutant IDH1 in the cells of individuals with AML. Our study provides proof of concept for the molecular and biological activity of novel allosteric inhibitors for targeting different mutant forms of IDH1 in leukemia.


Nature Immunology | 2013

Satb1 regulates the self-renewal of hematopoietic stem cells by promoting quiescence and repressing differentiation commitment

Britta Will; Thomas O. Vogler; Boris Bartholdy; Francine E. Garrett-Bakelman; Jillian Mayer; Laura Barreyro; Ashley Pandolfi; Tihomira I. Todorova; Ujunwa C. Okoye-Okafor; Robert F. Stanley; Tushar D. Bhagat; Amit Verma; Maria E. Figueroa; Ari Melnick; Michael Roth; Ulrich Steidl

How hematopoietic stem cells (HSCs) coordinate the regulation of opposing cellular mechanisms such as self-renewal and differentiation commitment remains unclear. Here we identified the transcription factor and chromatin remodeler Satb1 as a critical regulator of HSC fate. HSCs lacking Satb1 had defective self-renewal, were less quiescent and showed accelerated lineage commitment, which resulted in progressive depletion of functional HSCs. The enhanced commitment was caused by less symmetric self-renewal and more symmetric differentiation divisions of Satb1-deficient HSCs. Satb1 simultaneously repressed sets of genes encoding molecules involved in HSC activation and cellular polarity, including Numb and Myc, which encode two key factors for the specification of stem-cell fate. Thus, Satb1 is a regulator that promotes HSC quiescence and represses lineage commitment.


Blood | 2015

IL8-CXCR2 pathway inhibition as a therapeutic strategy against MDS and AML stem cells

Carolina Schinke; Orsolya Giricz; Weijuan Li; Aditi Shastri; Shanisha Gordon; Laura Barreyro; Laura Barreryo; Tushar D. Bhagat; Sanchari Bhattacharyya; Nandini Ramachandra; Matthias Bartenstein; Andrea Pellagatti; Jacqueline Boultwood; Amittha Wickrema; Yiting Yu; Britta Will; Sheng Wei; Ulrich Steidl; Amit Verma

Acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) are associated with disease-initiating stem cells that are not eliminated by conventional therapies. Novel therapeutic targets against preleukemic stem cells need to be identified for potentially curative strategies. We conducted parallel transcriptional analysis of highly fractionated stem and progenitor populations in MDS, AML, and control samples and found interleukin 8 (IL8) to be consistently overexpressed in patient samples. The receptor for IL8, CXCR2, was also significantly increased in MDS CD34(+) cells from a large clinical cohort and was predictive of increased transfusion dependence. High CXCR2 expression was also an adverse prognostic factor in The Cancer Genome Atlas AML cohort, further pointing to the critical role of the IL8-CXCR2 axis in AML/MDS. Functionally, CXCR2 inhibition by knockdown and pharmacologic approaches led to a significant reduction in proliferation in several leukemic cell lines and primary MDS/AML samples via induction of G0/G1 cell cycle arrest. Importantly, inhibition of CXCR2 selectively inhibited immature hematopoietic stem cells from MDS/AML samples without an effect on healthy controls. CXCR2 knockdown also impaired leukemic growth in vivo. Together, these studies demonstrate that the IL8 receptor CXCR2 is an adverse prognostic factor in MDS/AML and is a potential therapeutic target against immature leukemic stem cell-enriched cell fractions in MDS and AML.


Journal of Experimental Medicine | 2012

A novel murine model of myeloproliferative disorders generated by overexpression of the transcription factor NF-E2

Kai B. Kaufmann; Albert Gründer; Tobias Hadlich; Julius Wehrle; Monika Gothwal; Ruzhica Bogeska; Thalia S. Seeger; Sarah Kayser; Kien Binh Pham; Jonas S. Jutzi; Lucas Ganzenmüller; Doris Steinemann; Brigitte Schlegelberger; Julia M. Wagner; Manfred Jung; Britta Will; Ulrich Steidl; Konrad Aumann; Martin Werner; Thomas Günther; Roland Schüle; Alessandro Rambaldi; Heike L. Pahl

Mice expressing a transgene encoding the transcription factor NF-E2 in hematopoietic cells exhibit features of myeloproliferative neoplasms, including thrombocytosis, Epo-independent colony formation, stem and progenitor cell overabundance, leukocytosis, and progression to acute myeloid leukemia.


Blood | 2010

Apoptosis induced by JAK2 inhibition is mediated by Bim and enhanced by the BH3 mimetic ABT-737 in JAK2 mutant human erythroid cells

Britta Will; Tanya Siddiqi; Meritxell Alberich Jordà; Takeshi Shimamura; Katarina Luptakova; Philipp B. Staber; Daniel B. Costa; Ulrich Steidl; Daniel G. Tenen; Susumu Kobayashi

The activating mutation JAK2 V617F plays a central role in the pathogenesis of polycythemia vera, essential thrombocythemia, and primary myelofibrosis. Inhibition of JAK2 activity leads to growth inhibition and apoptosis in cells with mutated JAK2. However, the proapoptotic proteins involved in JAK2 inhibition-induced apoptosis remain unclear. In this study, we show that JAK2 inhibition-induced apoptosis correlated with up-regulation of the nonphosphorylated form of the BH3-only protein Bim in hematopoietic cell lines bearing JAK2 mutations. Knockdown of Bim dramatically inhibited apoptosis induced by JAK2 inhibition, which was reversed by the BH3 mimetic agent ABT-737. In addition, ABT-737 enhanced the apoptosis induced by JAK2 inhibition in JAK2 V617F(+) HEL and SET-2 cells. The combination of JAK inhibitor I and ABT-737 reduced the number of erythroid colonies derived from CD34(+) cells isolated from JAK2 V617F(+) polycythemia vera patients more efficiently than either drug alone. These data suggest that Bim is a key effector molecule in JAK2 inhibition-induced apoptosis and that targeting this apoptotic pathway could be a novel therapeutic strategy for patients with activating JAK2 mutations.

Collaboration


Dive into the Britta Will's collaboration.

Top Co-Authors

Avatar

Ulrich Steidl

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Amit Verma

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Boris Bartholdy

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Laura Barreyro

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Tihomira I. Todorova

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Tushar D. Bhagat

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Luis Carvajal

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Yiting Yu

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Ioannis Mantzaris

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Kelly Mitchell

Albert Einstein College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge