Bronwyn Rayfield
McGill University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bronwyn Rayfield.
Landscape Ecology | 2010
Bronwyn Rayfield; Marie-Josée Fortin; Andrew Fall
Maintaining and restoring connectivity among high-quality habitat patches is recognized as an important goal for the conservation of animal populations. To provide an efficient measure of potential connectivity pathways in heterogeneous landscapes, least-cost route analysis has been combined with graph-theoretical techniques. In this study we use spatially explicit least-cost habitat graphs to examine how matrix quality and spatial configuration influence assessments of habitat connectivity. We generated artificial landscapes comprised of three landcover types ranked consistently from low to high quality: inhospitable matrix, hospitable matrix, and habitat. We controlled the area and degree of fragmentation of each landcover in a factorial experiment for a total of 20 combinations replicated 100 times. In each landscape we compared eight sets of relative landcover qualities (cost values of 1 for habitat, between 1.5 and 150 for hospitable matrix, and 3–10,000 for inhospitable matrix). We found that the spatial location of least-cost routes was sensitive to differences in relative cost values assigned to landcover types and that the degree of sensitivity depended on the spatial structure of the landscape. Highest sensitivity was found in landscapes with fragmented habitat and between 20 and 50% hospitable matrix; sensitivity decreased as habitat fragmentation decreased and the amount of hospitable matrix increased. As a means of coping with this sensitivity, we propose identifying multiple low-cost routes between pairs of habitat patches that collectively delineate probable movement zones. These probable movement zones account for uncertainty in least-cost routes and may be more robust to variation in landcover cost values.
Ecology and Society | 2015
Matthew G. E. Mitchell; Elena M. Bennett; Andrew Gonzalez; Martin J. Lechowicz; Jeanine M. Rhemtulla; Jeffrey A. Cardille; Kees Vanderheyden; Genevieve Poirier-Ghys; Delphine Renard; Sylvestre Delmotte; Cécile H. Albert; Bronwyn Rayfield; Maria Dumitru; Hsin-Hui Huang; Martine Larouche; Kate N. Liss; Dorothy Y. Maguire; Kyle T. Martins; Marta Terrado; Carly Ziter; Lucie Taliana; Karine Dancose
To maximize specific ecosystem services (ES) such as food production, people alter landscape structure, i.e., the types of ecosystems present, their relative proportions, and their spatial arrangement across landscapes. This can have significant, and sometimes unexpected, effects on biodiversity and ES. Communities need information about how land/use activities and changes to landscape structure are likely to affect biodiversity and ES, but current scientific understanding of these effects is incomplete. The Monteregie Connection (MC) project has used the rapidly suburbanizing agricultural Monteregien landscape just east of Montreal, Quebec, Canada, to investigate how current and historic landscape structure influences ES provision. Our results highlight the importance of forest connectivity and functional diversity on ES provision, and show that ES provision can vary significantly even within single land-use types in response to changes in landscape structure. Our historical analysis reveals that levels of ES provision, as well as relationships among individual ES, can change dramatically through time. We are using these results to build quantitative ES-landscape structure models to assess four future landscape scenarios for the region: Periurban Development, Demand for Energy, Whole-System Crisis, and Green Development. These scenarios integrate empirical and historical data on ES provision with local stakeholder input about global and local social and ecological drivers to explore how land-use decisions could affect ES provision and human well-being across the region to the year 2045. By integrating empirical data, quantitative models, and scenarios we have achieved the central goals of the MC project: (1) increasing understanding of the effects of landscape structure on biodiversity and ES provision, (2) effectively linking this knowledge to decision making to better manage for biodiversity and ES, and (3) creating a vision for a more sustainable social-ecological system in the region.
PLOS ONE | 2014
David Pelletier; Melissa Clark; Mark G. Anderson; Bronwyn Rayfield; Michael A. Wulder; Jeffrey A. Cardille
Connectivity models are useful tools that improve the ability of researchers and managers to plan land use for conservation and preservation. Most connectivity models function in a point-to-point or patch-to-patch fashion, limiting their use for assessing connectivity over very large areas. In large or highly fragmented systems, there may be so many habitat patches of interest that assessing connectivity among all possible combinations is prohibitive. To overcome these conceptual and practical limitations, we hypothesized that minor adaptation of the Circuitscape model can allow the creation of omnidirectional connectivity maps illustrating flow paths and variations in the ease of travel across a large study area. We tested this hypothesis in a 24,300 km2 study area centered on the Montérégie region near Montréal, Québec. We executed the circuit model in overlapping tiles covering the study region. Current was passed across the surface of each tile in orthogonal directions, and then the tiles were reassembled to create directional and omnidirectional maps of connectivity. The resulting mosaics provide a continuous view of connectivity in the entire study area at the full original resolution. We quantified differences between mosaics created using different tile and buffer sizes and developed a measure of the prominence of seams in mosaics formed with this approach. The mosaics clearly show variations in current flow driven by subtle aspects of landscape composition and configuration. Shown prominently in mosaics are pinch points, narrow corridors where organisms appear to be required to traverse when moving through the landscape. Using modest computational resources, these continuous, fine-scale maps of nearly unlimited size allow the identification of movement paths and barriers that affect connectivity. This effort develops a powerful new application of circuit models by pinpointing areas of importance for conservation, broadening the potential for addressing intriguing questions about resource use, animal distribution, and movement.
Ecography | 2017
Patrick L. Thompson; Bronwyn Rayfield; Andrew Gonzalez
&NA; Habitat loss fragments metacommunities, altering the movement of species between previously connected habitat patches. The consequences of habitat loss for ecosystem functioning depend, in part, on how these changes in connectivity alter the spatial insurance effects of biodiversity. Spatial insurance is the maintenance of biodiversity and stable ecosystem functioning in changing environments that occurs when species are able to move between local habitat patches in order to track conditions to which they are adapted. Spatial insurance requires a combination of species sorting dynamics, which allow species to disperse to habitats where they are productive, and mass effect dynamics, where dispersal allows species to persist in marginal habitats where environmental conditions do not support growth. Here we use a spatially explicit metacommunity model to show that the relative contribution of species sorting and mass effects to spatial insurance changes with the rate of dispersal. We then simulate different sequences of habitat loss by removing habitat patches based on their betweenness centrality (the degree to which a patch serves as a connection between other patches in the metacommunity). We demonstrate that the sequence of habitat loss has a large, non‐linear impact on diversity, ecosystem functioning and stability. Spatial insurance is lost because habitat fragmentation impedes species sorting, while promoting mass effects and dispersal limitation. We find that species sorting dynamics, and thus spatial insurance, are most robust to the removal of habitat patches with low betweenness centrality. These findings advance our understanding of how habitat connectivity facilitates the maintenance of biodiversity and ecosystem functioning, and may prove useful for the design of habitat networks.
Science | 2017
Luis J. Gilarranz; Bronwyn Rayfield; Gustavo Liñán-Cembrano; Jordi Bascompte; Andrew Gonzalez
Modularity limits disturbance effects The networks that form natural, social, and technological systems are vulnerable to the spreading impacts of perturbations. Theory predicts that networks with a clustered or modular structure—where nodes within a module interact more frequently than they do with nodes in other modules—might contain a perturbation, preventing it from spreading to the entire network. Gilarranz et al. conducted experiments with networked populations of springtail (Folsomia candida) microarthropods to show that modularity limits the impact of a local extinction on neighboring nodes (see the Perspective by Sales-Pardo). In networks with high modularity, the perturbation was contained within the targeted module, and its impact did not spread to nodes beyond it. However, simulations revealed that modularity is beneficial to the network only when perturbations are present; otherwise, it hinders population growth. Science, this issue p. 199; see also p. 128 Networks of springtail (Folsomia candida) microarthropods are more robust to perturbation when organized in modules. Networks with a modular structure are expected to have a lower risk of global failure. However, this theoretical result has remained untested until now. We used an experimental microarthropod metapopulation to test the effect of modularity on the response to perturbation. We perturbed one local population and measured the spread of the impact of this perturbation, both within and between modules. Our results show the buffering capacity of modular networks. To assess the generality of our findings, we then analyzed a dynamical model of our system. We show that in the absence of perturbations, modularity is negatively correlated with metapopulation size. However, even when a small local perturbation occurs, this negative effect is offset by a buffering effect that protects the majority of the nodes from the perturbation.
Methods in Ecology and Evolution | 2016
Bronwyn Rayfield; David Pelletier; Maria Dumitru; Jeffrey A. Cardille; Andrew Gonzalez
Summary Biodiversity conservation in landscapes undergoing climate and land-use changes requires designing multipurpose habitat networks that connect the movements of organisms at multiple spatial scales. Short-range connectivity within habitat networks provides organisms access to spatially distributed resources, reduces local extinctions and increases recolonization of habitat fragments. Long-range connectivity across habitat networks facilitates annual migrations and climate-driven range shifts. We present a method for identifying a multipurpose network of forest patches that promotes both short- and long-range connectivity. Our method uses both graph-theoretic analyses that quantify network connectedness and circuit-based analyses that quantify network traversability as the basis for identifying spatial conservation priorities on the landscape. We illustrate our approach in the agroecosystem, bordered by the Laurentian and Appalachian mountain ranges, that surrounds the metropolis of Montreal, Canada. We established forest conservation priorities for the ovenbird, a Neotropical migrant, sensitive to habitat fragmentation that breeds in our study area. All connectivity analyses were based on the same empirically informed resistance surface for ovenbird, but habitat pixels that facilitated short- and long-range connectivity requirements had low spatial correlation. The trade-off between connectivity requirements in the final ranking of conservation priorities showed a pattern of diminishing returns such that beyond a threshold, additional conservation of long-range connectivity had decreased effectiveness on the conservation of short-range connectivity. Highest conservation priority was assigned to a series of stepping stone forest patches across the study area that promote traversability between the bordering mountain ranges and to a collection of small forest fragments scattered throughout the study area that provide connectivity within the agroecosystem. Landscape connectivity is important for the ecology and genetics of populations threatened by climate change and habitat fragmentation. Our method has been illustrated as a means to conserve two critical dimensions of connectivity for a single species, but it is designed to incorporate a variety of connectivity requirements for many species. Our approach can be tailored to local, regional and continental conservation initiatives to protect essential species movements that will allow biodiversity to persist in a changing climate.
Ecography | 2017
Shawn J. Leroux; Cécile H. Albert; Anne-Sophie Lafuite; Bronwyn Rayfield; Shaopeng Wang; Dominique Gravel
&NA; Ecological theory is essential to predict the effects of global changes such as habitat loss and fragmentation on biodiversity. Species–area relationships (SAR), metapopulation models (MEP) and species distribution models (SDM) are commonly used tools incorporating different ecological processes to explain biodiversity distribution and dynamics. Yet few studies have compared the outcomes of these disparate models and investigated their complementarity. Here we show that the processes underlying SAR (patch area), MEP (patch isolation) and SDM (environmental conditions) models can be compared with a common statistical framework. Our approach allows for species and community‐level predictions under current and future landscape scenarios, facilitates multi‐model comparison and provides the machinery for integrating multiple mechanisms into one model. We apply this framework to the distribution of eight focal vertebrate species in current and future projected landscapes where 10% of the landscape is lost to land‐use change in southwestern, Quebec, Canada. Based on a model selection approach, we found that a model including patch area was the top ranked model for four of our focal species and models including patch isolation and environmental conditions were the top ranked models for two focal species each. Community‐level predictions of models based on patch area, patch isolation and environmental conditions for both current and future landscapes showed high spatial overlap, however, patch area models always predicted a reduction of species richness per patch whereas both the patch isolation and environmental conditions models predicted an increase or decrease in species richness per patch following habitat loss and fragmentation. Our comparative tool will allow ecologists and conservation practitioners to relate structural uncertainty to key mechanisms underlying each model. Ultimately, this approach is one step in the direction of deriving robust predictions for the change and loss of biodiversity under global change, which is key for informing conservation plans.
PLOS ONE | 2014
Georgina O’Farrill; Kim Gauthier Schampaert; Bronwyn Rayfield; Örjan Bodin; Sophie Calmé; Raja Sengupta; Andrew Gonzalez
Landscape connectivity is considered a priority for ecosystem conservation because it may mitigate the synergistic effects of climate change and habitat loss. Climate change predictions suggest changes in precipitation regimes, which will affect the availability of water resources, with potential consequences for landscape connectivity. The Greater Calakmul Region of the Yucatan Peninsula (Mexico) has experienced a 16% decrease in precipitation over the last 50 years, which we hypothesise has affected water resource connectivity. We used a network model of connectivity, for three large endangered species (Baird’s tapir, white-lipped peccary and jaguar), to assess the effect of drought on waterhole availability and connectivity in a forested landscape inside and adjacent to the Calakmul Biosphere Reserve. We used reported travel distances and home ranges for our species to establish movement distances in our model. Specifically, we compared the effects of 10 drought scenarios on the number of waterholes (nodes) and the subsequent changes in network structure and node importance. Our analysis revealed that drought dramatically influenced spatial structure and potential connectivity of the network. Our results show that waterhole connectivity and suitable habitat (area surrounding waterholes) is lost faster inside than outside the reserve for all three study species, an outcome that may drive them outside the reserve boundaries. These results emphasize the need to assess how the variability in the availability of seasonal water resource may affect the viability of animal populations under current climate change inside and outside protected areas.
Ecology | 2016
T. Jonathan Davies; Mark C. Urban; Bronwyn Rayfield; Marc W. Cadotte; Pedro R. Peres-Neto
Recent studies have supported a link between phylogenetic diversity and various ecological properties including ecosystem function. However, such studies typically assume that phylogenetic branches of equivalent length are more or less interchangeable. Here we suggest that there is a need to consider not only branch lengths but also their placement on the phylogeny. We demonstrate how two common indices of network centrality can be used to describe the evolutionary distinctiveness of network elements (nodes and branches) on a phylogeny. If phylogenetic diversity enhances ecosystem function via complementarity and the representation of functional diversity, we would predict a correlation between evolutionary distinctiveness of network elements and their contribution to ecosystem process. In contrast, if one or a few evolutionary innovations play key roles in ecosystem function, the relationship between evolutionary distinctiveness and functional contribution may be weak or absent. We illustrate how network elements associated with high functional contribution can be identified from regressions between phylogenetic diversity and productivity using a well-known empirical data set on plant productivity from the Cedar Creek Long-Term Ecological Research. We find no association between evolutionary distinctiveness and ecosystem functioning, but we are able to identify phylogenetic elements associated with species of known high functional contribution within the Fabaceae. Our perspective provides a useful guide in the search for ecological traits linking diversity and ecosystem function, and suggests a more nuanced consideration of phylogenetic diversity is required in the conservation and biodiversity-ecosystem-function literature.
Ecology | 2011
Bronwyn Rayfield; Marie-Josée Fortin; Andrew Fall