Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brooke E. Crowley is active.

Publication


Featured researches published by Brooke E. Crowley.


American Journal of Primatology | 2011

A glance to the past: subfossils, stable isotopes, seed dispersal, and lemur species loss in Southern Madagascar

Brooke E. Crowley; Laurie R. Godfrey; Mitchell T. Irwin

The Spiny Thicket Ecoregion (STE) of Southern and southwestern Madagascar was recently home to numerous giant lemurs and other “megafauna,” including pygmy hippopotamuses, giant tortoises, elephant birds, and large euplerid carnivores. Following the arrival of humans more than 2,000 years ago, dramatic extinctions occurred. Only one‐third of the lemur species which earlier occupied the STE survive today; other taxa suffered even greater losses. We use stable isotope biogeochemistry to reconstruct past diets and habitat preferences of the recently extinct lemurs of the STE. We show that the extinct lemurs occupied a wide range of niches, often distinct from those filled by coeval non‐primates. Many of the now‐extinct lemurs regularly exploited habitats that were drier than the gallery forests in which the remaining lemurs of this ecoregion are most often protected and studied. Most fed predominantly on C3 plants and some were likely the main dispersers of the large seeds of native C3 trees; others included CAM and/or C4 plants in their diets. These new data suggest that the recent extinctions have likely had significant ecological ramifications for the communities and ecosystems of Southern and southwestern Madagascar. Am. J. Primatol. 73:25–37, 2011.


PLOS ONE | 2014

Quantifying inter-laboratory variability in stable isotope analysis of ancient skeletal remains

William J. Pestle; Brooke E. Crowley; Matthew T. Weirauch

Over the past forty years, stable isotope analysis of bone (and tooth) collagen and hydroxyapatite has become a mainstay of archaeological and paleoanthropological reconstructions of paleodiet and paleoenvironment. Despite this methods frequent use across anthropological subdisciplines (and beyond), the present work represents the first attempt at gauging the effects of inter-laboratory variability engendered by differences in a) sample preparation, and b) analysis (instrumentation, working standards, and data calibration). Replicate analyses of a 14C-dated ancient human bone by twenty-one archaeological and paleoecological stable isotope laboratories revealed significant inter-laboratory isotopic variation for both collagen and carbonate. For bone collagen, we found a sizeable range of 1.8‰ for δ13Ccol and 1.9‰ for δ15Ncol among laboratories, but an interpretatively insignificant average pairwise difference of 0.2‰ and 0.4‰ for δ13Ccol and δ15Ncol respectively. For bone hydroxyapatite the observed range increased to a troublingly large 3.5‰ for δ13Cap and 6.7‰ for δ18Oap, with average pairwise differences of 0.6‰ for δ13Cap and a disquieting 2.0‰ for δ18Oap. In order to assess the effects of preparation versus analysis on isotopic variability among laboratories, a subset of the samples prepared by the participating laboratories were analyzed a second time on the same instrument. Based on this duplicate analysis, it was determined that roughly half of the isotopic variability among laboratories could be attributed to differences in sample preparation, with the other half resulting from differences in analysis (instrumentation, working standards, and data calibration). These findings have serious implications for choices made in the preparation and extraction of target biomolecules, the comparison of results obtained from different laboratories, and the interpretation of small differences in bone collagen and hydroxyapatite isotope values. To address the issues arising from inter-laboratory comparisons, we devise a novel measure we term the Minimum Meaningful Difference (MMD), and demonstrate its application.


International Journal of Primatology | 2012

Stable Isotope Techniques and Applications for Primatologists

Brooke E. Crowley

Stable isotope biogeochemistry is useful for quantifying the feeding ecology of modern and extinct primates. Over the past three decades, substantial advances have been made in our knowledge of the physiological causes of isotopic patterns as well as effective methodology to prepare samples for isotopic analysis. Despite these advances, the potential of stable isotope biogeochemistry has yet to be fully exploited by primate researchers, perhaps due to the prolific and somewhat daunting nature of the isotopic literature. I here aim to present a cogent overview of stable isotope applications to nonhuman primate feeding ecology. I review the factors that influence ecological patterns in carbon, nitrogen, and oxygen stable isotopes. I present methods for collecting and preparing samples of tooth enamel and bone mineral hydroxyapatite, bone collagen, fur and hair keratin, blood, feces, and urine for isotope analysis. I discuss both the existing and potential applications of these isotopic patterns to primate feeding ecology. Lastly, I point out some of the pitfalls to avoid when interpreting and comparing isotopic results.


Biology Letters | 2012

Bornean orangutans on the brink of protein bankruptcy

Erin R. Vogel; Cheryl D. Knott; Brooke E. Crowley; Melissa D. Blakely; Michael D. Larsen; Nathaniel J. Dominy

Protein is a limiting resource that is essential to the growth, maintenance and reproduction of tropical frugivores, yet few studies have examined how wild animals maintain protein balance. During chronic periods of fruit scarcity, Bornean orangutans (Pongo pygmaeus) often catabolize their own fat reserves despite unusually low metabolic requirements. Such energy deficits suggest a marginal existence, and raise the possibility that orangutans also endure periods of negative protein balance. To test this hypothesis, we conducted the first study of protein cycling in a wild primate. Our five year analysis of urinary metabolites revealed evidence of protein recycling when fruit was scarce. During these periods, orangutans consumed more leaves and bark, proteinaceous but tough foods that yielded a mean daily intake of 1.4 g protein kg−1 metabolic mass. Such an amount is inadequate for humans and one-tenth the intake of mountain gorillas, but sufficient to avert, perhaps narrowly, a severe protein deficit. Our findings highlight the functional and adaptive value of traits that maximize protein assimilation during periods of ecological exigency.


Geological Society of America Bulletin | 2008

Stable isotope constraints on the elevation history of the Sierra Nevada Mountains, California

Brooke E. Crowley; Paul L. Koch; Edward Byrd Davis

Research on the uplift history of the Sierra Nevada mountain range has yielded seemingly conflicting results. Some studies argue for substantial uplift within the past 3–5 m.y.; others suggest that high elevations may have existed since the Cretaceous. The rain shadow across the Sierra Nevada is associated with a strong isotopic gradient, with lower δ18O values in precipitation on the leeward side of the range. Reconstruction of the δ18O value of meteoric water as a monitor of paleoelevation has focused mainly on the leeward side of the Sierras, but interpretation of the results of these studies may be complicated by shifts in global climate and regional moisture sources. We address these concerns by analyzing the δ18O value of tooth enamel bioapatite from contemporaneous mammalian fossils on either side of the present Sierra range. By sampling across the range, δ18O differences induced by a rain shadow can be isolated from other complicating factors. Our results indicate that the Sierra rain shadow has existed since at least 16 Ma, which is an important constraint on models for the tectonic evolution of the western United States. Unfortunately, temporal resolution for localities is too coarse to differentiate between glacial and interglacial localities during the past 2 m.y., so we cannot evaluate if there was a latest Cenozoic pulse of uplift or elevation loss.


Proceedings of the Royal Society of London B: Biological Sciences | 2012

Extinction and ecological retreat in a community of primates

Brooke E. Crowley; Laurie R. Godfrey; Thomas P. Guilderson; Paula Zermeño; Paul L. Koch; Nathaniel J. Dominy

The lemurs of Madagascar represent a prodigious adaptive radiation. At least 17 species ranging from 11 to 160 kg have become extinct during the past 2000 years. The effect of this loss on contemporary lemurs is unknown. The concept of competitive release favours the expansion of living species into vacant niches. Alternatively, factors that triggered the extinction of some species could have also reduced community-wide niche breadth. Here, we use radiocarbon and stable isotope data to examine temporal shifts in the niches of extant lemur species following the extinction of eight large-bodied species. We focus on southwestern Madagascar and report profound isotopic shifts, both from the time when now-extinct lemurs abounded and from the time immediately following their decline to the present. Unexpectedly, the past environments exploited by lemurs were drier than the protected (albeit often degraded) riparian habitats assumed to be ideal for lemurs today. Neither competitive release nor niche contraction can explain these observed trends. We develop an alternative hypothesis: ecological retreat, which suggests that factors surrounding extinction may force surviving species into marginal or previously unfilled niches.


International Journal of Primatology | 2012

A Noninvasive Method for Estimating Nitrogen Balance in Free-Ranging Primates

Erin R. Vogel; Brooke E. Crowley; Cheryl D. Knott; Melissa D. Blakely; Michael D. Larsen; Nathaniel J. Dominy

The vital role of body protein as an energy reserve has received little focus in studies of wild primates. Owing to the relatively low protein content of fruit, some frugivorous primates could face a protein deficit if body protein is catabolized for energy during periods of low fruit availability. Such an imbalance can be detected if fatty acids, amino acids, and nitrogen (N) catabolites are reincorporated or recycled back to tissues. Here we describe a method to quantify protein recycling by measuring standardized urea concentration and N isotope signatures from urine samples collected from wild Bornean orangutans (Pongo pygmaeus wurmbii). Our overall goal was to explore if concentrations of urea and δ15N values could be used as indicators of the amount of protein consumed and the degree of protein recycling, respectively, in wild, free-ranging primates. We examine the relationships between urea concentration, δ15N values, protein intake, and fruit availability. Urea concentration increased with fruit availability, reflecting a slight increase in protein consumption when fruit was abundant. However, we found no relationship between δ15N values and fruit availability, suggesting that orangutans avert a negative protein balance during periods of low fruit availability. These noninvasive methods complement recent advances in primate energy balance research and will contribute to our understanding of adaptations of primates during periods of fruit shortage.


American Journal of Physical Anthropology | 2014

Technical Note: Calcium and carbon stable isotope ratios as paleodietary indicators.

Amanda D. Melin; Brooke E. Crowley; Patrick V. Wheatley; Gillian L. Moritz; Fred Tuh Yit Yu; Henry Bernard; Donald J. DePaolo; Andrew D. Jacobson; Nathaniel J. Dominy

Calcium stable isotope ratios are hypothesized to vary as a function of trophic level. This premise raises the possibility of using calcium stable isotope ratios to study the dietary behaviors of fossil taxa and to test competing hypotheses on the adaptive origins of euprimates. To explore this concept, we measured the stable isotope composition of contemporary mammals in northern Borneo and northwestern Costa Rica, two communities with functional or phylogenetic relevance to primate origins. We found that bone collagen δ(13) C and δ(15) N values could differentiate trophic levels in each assemblage, a result that justifies the use of these systems to test the predicted inverse relationship between bioapatite δ(13) C and δ(44) Ca values. As expected, taxonomic carnivores (felids) showed a combination of high δ(13) C and low δ(44) Ca values; however, the δ(44) Ca values of other faunivores were indistinguishable from those of primary consumers. We suggest that the trophic insensitivity of most bioapatite δ(44) Ca values is attributable to the negligible calcium content of arthropod prey. Although the present results are inconclusive, the tandem analysis of δ(44) Ca and δ(13) C values in fossils continues to hold promise for informing paleodietary studies and we highlight this potential by drawing attention to the stable isotope composition of the Early Eocene primate Cantius.


Biological Reviews | 2017

Strontium isotopes ((87) Sr/(86) Sr) in terrestrial ecological and palaeoecological research: empirical efforts and recent advances in continental-scale models.

Brooke E. Crowley; Joshua H. Miller; Clément P. Bataille

Strontium (Sr) isotope analysis can provide detailed biogeographical and ecological information about modern and ancient organisms. Because Sr isotope ratios (87Sr/86Sr) in biologically relevant materials such as water, soil, vegetation, and animal tissues predominantly reflect local geology, they can be used to distinguish geologically distinct regions as well as identify highly mobile individuals or populations. While the application of Sr isotope analysis to biological research has been steadily increasing, high analytical costs have prohibited more widespread use. Additionally, accessibility of this geochemical tool has been hampered due to limited understanding of (i) the degree to which biologically relevant materials differ in their spatial averaging of 87Sr/86Sr ratios, and (ii) how these differences may be affected by lithologic complexity. A recently developed continental‐scale model that accounts for variability in bedrock weathering rates and predicts Sr isotope ratios of surface water could help resolve these questions. In addition, if this ‘local water’ model can accurately predict 87Sr/86Sr ratios for other biologically relevant materials, there would be reduced need for researchers to assess regional Sr isotope patterns empirically. Here, we compile 87Sr/86Sr data for surface water, soil, vegetation, and mammalian and fish skeletal tissues from the literature and compare the accuracy with which the local water model predicts Sr isotope data among these five materials across the contiguous USA. We find that measured Sr isotope ratios for all five materials are generally close to those predicted by the local water model, although not with uniform accuracy. Mammal skeletal tissues are most accurately predicted, particularly in regions with low variability in 87Sr/86Sr predicted by the local water model. Increasing regional geologic heterogeneity increases both the offset and variance between modelled and empirical Sr isotope ratios, but its effects are broadly similar across materials. The local water model thus provides a readily available source of background data for predicting 87Sr/86Sr for biologically relevant materials in places where empirical data are lacking. The availability of increasingly high‐quality modelled Sr data will dramatically expand the accessibility of this geochemical tool to ecological applications.


American Journal of Physical Anthropology | 2014

Stable isotopes complement focal individual observations and confirm dietary variability in reddish–gray mouse lemurs (Microcebus griseorufus) from southwestern Madagascar

Brooke E. Crowley; Emilienne Rasoazanabary; Laurie R. Godfrey

We examine the ecology of reddish-gray mouse lemurs from three habitats at Beza Mahafaly Special Reserve using focal follows and stable carbon and nitrogen isotope data. Focal observations indicate dietary differences among habitats as well as sexes and seasons. Both sexes consume more arthropods during the rainy season but overall, females consume more sugar-rich exudates and fruit than males, and individuals from riparian forest consume fewer arthropods and more fruit than those in xeric or dry forest. We ask whether these observations are isotopically detectable. Isotope data support differences between seasons and sexes. Nitrogen isotope values are higher during the rainy season when lemurs consume more arthropods, and higher in males than females, particularly during the dry season. However, differences among populations inferred from focal observations are not fully supported. Lemurs from riparian forest have lower isotope values than those in xeric scrub, but isotope data suggest that lemurs from the dry forest eat the least animal matter and that focal observations overestimated dry forest arthropod consumption. Overall, our results suggest that observational and isotopic data are complementary. Isotope data can be obtained from a larger number of individuals and can quantify ingestion of animal matter, but they apparently cannot quantify the relative consumption of different sugar-rich foods. Combined focal and isotope data provide valuable insight into the dietary constraints of reddish-grey mouse lemurs, with implications for their vulnerability to future habitat change.

Collaboration


Dive into the Brooke E. Crowley's collaboration.

Top Co-Authors

Avatar

Laurie R. Godfrey

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karen E. Samonds

Northern Illinois University

View shared research outputs
Top Co-Authors

Avatar

David A. Burney

National Tropical Botanical Garden

View shared research outputs
Top Co-Authors

Avatar

George H. Perry

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Paul L. Koch

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Douglas J. Kennett

Pennsylvania State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge