Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brooke E. Hjelm is active.

Publication


Featured researches published by Brooke E. Hjelm.


Vaccine | 2008

An efficient plant viral expression system generating orally immunogenic Norwalk virus-like particles

Luca Santi; Lance Batchelor; Zhong Huang; Brooke E. Hjelm; Jacquelyn Kilbourne; Charles J. Arntzen; Qiang Chen; Hugh S. Mason

Virus-like particles (VLPs) derived from enteric pathogens like Norwalk virus (NV) are well suited to study oral immunization. We previously described stable transgenic plants that accumulate recombinant NV-like particles (rNVs) that were orally immunogenic in mice and humans. The transgenic approach suffers from long generation time and modest level of antigen accumulation. We now overcome these constraints with an efficient tobacco mosaic virus (TMV)-derived transient expression system using leaves of Nicotiana benthamiana. We produced properly assembled rNV at 0.8 mg/g leaf 12 days post-infection (dpi). Oral immunization of CD1 mice with 100 or 250 microg/dose of partially purified rNV elicited systemic and mucosal immune responses. We conclude that the plant viral transient expression system provides a robust research tool to generate abundant quantities of rNV as enriched, concentrated VLP preparations that are orally immunogenic.


Biotechnology and Bioengineering | 2009

A DNA replicon system for rapid high‐level production of virus‐like particles in plants

Zhong Huang; Qiang Chen; Brooke E. Hjelm; Charles J. Arntzen; Hugh S. Mason

Recombinant virus‐like particles (VLPs) represent a safe and effective vaccine strategy. We previously described a stable transgenic plant system for inexpensive production and oral delivery of VLP vaccines. However, the relatively low‐level antigen accumulation and long‐time frame to produce transgenic plants are the two major roadblocks in the practical development of plant‐based VLP production. In this article, we describe the optimization of geminivirus‐derived DNA replicon vectors for rapid, high‐yield plant‐based production of VLPs. Co‐delivery of bean yellow dwarf virus (BeYDV)‐derived vector and Rep/RepA‐supplying vector by agroinfiltration of Nicotiana benthamiana leaves resulted in efficient replicon amplification and robust protein production within 5 days. Co‐expression of the P19 protein of tomato bush stunt virus, a gene silencing inhibitor, further enhanced VLP accumulation by stabilizing the mRNA. With this system, hepatitis B core antigen (HBc) and Norwalk virus capsid protein (NVCP) were produced at 0.80 and 0.34 mg/g leaf fresh weight, respectively. Sedimentation analysis and electron microscopy of transiently expressed antigens verified the efficient assembly of VLPs. Furthermore, a single replicon vector containing a built‐in Rep/RepA cassette without P19 drove protein expression at similar levels as the three‐component system. These results demonstrate the advantages of fast and high‐level production of VLP‐based vaccines using the BeYDV‐derived DNA replicon system for transient expression in plants. Biotechnol. Bioeng. 2009;103: 706–714.


Biology of Reproduction | 2010

Development and Characterization of a Three-Dimensional Organotypic Human Vaginal Epithelial Cell Model

Brooke E. Hjelm; Alice N. Berta; Cheryl A. Nickerson; Charles J. Arntzen; Melissa M. Herbst-Kralovetz

Abstract We have developed an in vitro human vaginal epithelial cell (EC) model using the innovative rotating wall vessel (RWV) bioreactor technology that recapitulates in vivo structural and functional properties, including a stratified squamous epithelium with microvilli, tight junctions, microfolds, and mucus. This three-dimensional (3-D) vaginal model provides a platform for high-throughput toxicity testing of candidate microbicides targeted to combat sexually transmitted infections, effectively complementing and extending existing testing systems such as surgical explants or animal models. Vaginal ECs were grown on porous, collagen-coated microcarrier beads in a rotating, low fluid-shear environment; use of RWV bioreactor technology generated 3-D vaginal EC aggregates. Immunofluorescence and scanning and transmission electron microscopy confirmed differentiation and polarization of the 3-D EC aggregates among multiple cell layers and identified ultrastructural features important for nutrient absorption, cell-cell interactions, and pathogen defense. After treatment with a variety of toll-like receptor (TLR) agonists, cytokine production was quantified by cytometric bead array, confirming that TLRs 2, 3, 5, and 6 were expressed and functional. The 3-D vaginal aggregates were more resistant to nonoxynol-9 (N-9), a contraceptive and previous microbicide candidate, when compared to two-dimensional monolayers of the same cell line. A dose-dependent production of tumor necrosis factor-related apoptosis-inducing ligand and interleukin-1 receptor antagonist, biomarkers of cervicovaginal inflammation, correlated to microbicide toxicity in the 3-D model following N-9 treatment. These results indicate that this 3-D vaginal model could be used as a complementary tool for screening microbicide compounds for safety and efficacy, thus improving success in clinical trials.


Emerging Infectious Diseases | 2013

Lack of Norovirus Replication and Histo-Blood Group Antigen Expression in 3-Dimensional Intestinal Epithelial Cells

Melissa M. Herbst-Kralovetz; Andrea L. Radtke; Margarita K. Lay; Brooke E. Hjelm; Alice N. Bolick; Shameema S. Sarker; Robert L. Atmar; David H. Kingsley; Charles J. Arntzen; Mary K. Estes; Cheryl A. Nickerson

TOC summary: The 3-dimensional intestinal model is not sufficient as a virus replication system for developing vaccines or drugs to control human norovirus infections.


Clinical and Vaccine Immunology | 2010

An Intranasally Delivered Toll-Like Receptor 7 Agonist Elicits Robust Systemic and Mucosal Responses to Norwalk Virus-Like Particles

Lissette S. Velasquez; Brooke E. Hjelm; Charles J. Arntzen; Melissa M. Herbst-Kralovetz

ABSTRACT Norwalk virus (NV) is an enteric pathogen from the genus Norovirus and a major cause of nonbacterial gastroenteritis in humans. NV virus-like particles (VLPs) are known to elicit systemic and mucosal immune responses when delivered nasally; however, the correlates of immune protection are unknown, and codelivery with a safe and immunogenic mucosal adjuvant may enhance protective anti-NV immune responses. Resiquimod (R848), an imidazoquinoline-based Toll-like receptor 7 and/or 8 (TLR7/8) agonist, is being evaluated as an adjuvant in FDA-approved clinical vaccine trials. As such, we evaluated the adjuvant activity of two imidazoquinoline-based TLR7 and TLR7/8 agonists when codelivered intranasally with plant-derived NV VLPs. We also compared the activity of these agonists to the gold standard mucosal adjuvant, cholera toxin (CT). Our results indicate that codelivery with the TLR7 agonist, gardiquimod (GARD), induces NV VLP-specific serum IgG and IgG isotype responses and mucosal IgA responses in the gastrointestinal, respiratory, and reproductive tracts that are superior to those induced by R848 and comparable to those induced by the mucosal adjuvant CT. This study supports the continued investigation of GARD as a mucosal adjuvant for NV VLPs and possible use for other VLP-based vaccines for which immune responses at distal mucosal sites (e.g., respiratory and reproductive tracts) are desired.


Molecular Neuropsychiatry | 2015

Evidence of Mitochondrial Dysfunction within the Complex Genetic Etiology of Schizophrenia

Brooke E. Hjelm; Brandi Rollins; Firoza Mamdani; Julie C. Lauterborn; George Kirov; Gary Lynch; Christine M. Gall; Adolfo Sequeira; Marquis P. Vawter

Genetic evidence has supported the hypothesis that schizophrenia (SZ) is a polygenic disorder caused by the disruption in function of several or many genes. The most common and reproducible cellular phenotype associated with SZ is a reduction in dendritic spines within the neocortex, suggesting alterations in dendritic architecture may cause aberrant cortical circuitry and SZ symptoms. Here, we review evidence supporting a multifactorial model of mitochondrial dysfunction in SZ etiology and discuss how these multiple paths to mitochondrial dysfunction may contribute to dendritic spine loss and/or underdevelopment in some SZ subjects. The pathophysiological role of mitochondrial dysfunction in SZ is based upon genomic analyses of both the mitochondrial genome and nuclear genes involved in mitochondrial function. Previous studies and preliminary data suggest SZ is associated with specific alleles and haplogroups of the mitochondrial genome, and also correlates with a reduction in mitochondrial copy number and an increase in synonymous and nonsynonymous substitutions of mitochondrial DNA. Mitochondrial dysfunction has also been widely implicated in SZ by genome-wide association, exome sequencing, altered gene expression, proteomics, microscopy analyses, and induced pluripotent stem cell studies. Together, these data support the hypothesis that SZ is a polygenic disorder with an enrichment of mitochondrial targets.


Human Vaccines & Immunotherapeutics | 2014

TLR7 and 9 agonists are highly effective mucosal adjuvants for norovirus virus-like particle vaccines

Brooke E. Hjelm; Jacquelyn Kilbourne; Melissa M. Herbst-Kralovetz

Virus-like particles (VLPs) are an active area of vaccine research, development and commercialization. Mucosal administration of VLPs provides an attractive avenue for delivery of vaccines with the potential to produce robust immune responses. Nasal and oral delivery routes are particularly intriguing due to differential activation of mucosa-associated lymphoid tissues. We compared both intranasal and oral administration of VLPs with a panel of toll-like receptor (TLR) agonists (TLR3, 5, 7, 7/8, and 9) to determine the mucosal adjuvant activity of these immunomodulators. We selected Norwalk virus (NV) VLPs because it is an effective model antigen and an active area of research and commercialization. To prioritize these adjuvants, VLP-specific antibody production in serum (IgG, IgG1, IgG2a), vaginal lavages (IgG, IgA), and fecal pellets (IgA) were measured across a longitudinal timeseries in vaccinated mice. Additional distal mucosal sites (nasal, brochoalveolar, salivary, and gastrointestinal) were evaluated for VLP-specific responses (IgA). Intranasal co-delivery of VLPs with TLR7 or TLR9 agonists produced the most robust and broad-spectrum immune responses, systemically and at distal mucosal sites inducing VLP-specific antibodies at all sites evaluated. In addition, these VLP-specific antibodies blocked binding of NV VLPs to histo-blood group antigen (H type 1), supporting their functionality. Oral administration and/or other TLR agonists tested in the panel did not consistently enhance VLP-specific immune responses. This study demonstrates that intranasal co-delivery of VLPs with TLR7 or TLR9 agonists provides dose-sparing advantages for induction of specific and functional antibody responses against VLPs (i.e., non-replicating antigens) in the respiratory, gastrointestinal, and reproductive tract.


Human Molecular Genetics | 2013

In vitro-differentiated neural cell cultures progress towards donor-identical brain tissue

Brooke E. Hjelm; Bodour Salhia; Ahmet Kurdoglu; Szabolcs Szelinger; Rebecca Reiman; Lucia I. Sue; Thomas G. Beach; Matthew J. Huentelman; David Craig

Multiple research groups have observed neuropathological phenotypes and molecular symptoms in vitro using induced pluripotent stem cell (iPSC)-derived neural cell cultures (i.e. patient-specific neurons and glia). However, the global differences/similarities that may exist between in vitro neural cells and their tissue-derived counterparts remain largely unknown. In this study, we compared temporal series of iPSC-derived in vitro neural cell cultures to endogenous brain tissue from the same autopsy donor. Specifically, we utilized RNA sequencing (RNA-Seq) to evaluate the transcriptional progression of in vitro-differentiated neural cells (over a timecourse of 0, 35, 70, 105 and 140 days), and compared this with donor-identical temporal lobe tissue. We observed in vitro progression towards the reference brain tissue, and the following three results support this conclusion: (i) there was a significant increasing monotonic correlation between the days of our timecourse and the number of actively transcribed protein-coding genes and long intergenic non-coding RNAs (lincRNAs) (P < 0.05), consistent with the transcriptional complexity of the brain; (ii) there was an increase in CpG methylation after neural differentiation that resembled the epigenomic signature of the endogenous tissue; and (iii) there was a significant decreasing monotonic correlation between the days of our timecourse and the percent of in vitro to brain-tissue differences (P < 0.05) for tissue-specific protein-coding genes and all putative lincRNAs. Taken together, these results are consistent with in vitro neural development and physiological progression occurring predominantly by transcriptional activation of downregulated genes rather than deactivation of upregulated genes.


Neuroscience & Biobehavioral Reviews | 2016

Targets of polyamine dysregulation in major depression and suicide: Activity-dependent feedback, excitability, and neurotransmission.

Agenor Limon; Firoza Mamdani; Brooke E. Hjelm; Marquis P. Vawter; Adolfo Sequeira

Major depressive disorder (MDD) is a leading cause of disability worldwide characterized by altered neuronal activity in brain regions involved in the control of stress and emotion. Although multiple lines of evidence suggest that altered stress-coping mechanisms underlie the etiology of MDD, the homeostatic control of neuronal excitability in MDD at the molecular level is not well established. In this review, we examine past and current evidence implicating dysregulation of the polyamine system as a central factor in the homeostatic response to stress and the etiology of MDD. We discuss the cellular effects of abnormal metabolism of polyamines in the context of their role in sensing and modulation of neuronal, electrical, and synaptic activity. Finally, we discuss evidence supporting an allostatic model of depression based on a chronic elevation in polyamine levels resulting in self-sustained stress response mechanisms maintained by maladaptive homeostatic mechanisms.


Cell Stem Cell | 2018

Super-Obese Patient-Derived iPSC Hypothalamic Neurons Exhibit Obesogenic Signatures and Hormone Responses

Uthra Rajamani; Andrew R. Gross; Brooke E. Hjelm; Adolfo Sequeira; Marquis P. Vawter; Jie Tang; Vineela Gangalapudi; Yizhou Wang; Allen M. Andres; Roberta A. Gottlieb; Dhruv Sareen

The hypothalamus contains neurons that integrate hunger and satiety endocrine signals from the periphery and are implicated in the pathophysiology of obesity. The limited availability of human hypothalamic neurons hampers our understanding of obesity disease mechanisms. To address this, we generated human induced pluripotent stem cells (hiPSCs) from multiple normal body mass index (BMI; BMI ≤ 25) subjects and super-obese (OBS) donors (BMI ≥ 50) with polygenic coding variants in obesity-associated genes. We developed a method to reliably differentiate hiPSCs into hypothalamic-like neurons (iHTNs) capable of secreting orexigenic and anorexigenic neuropeptides. Transcriptomic profiling revealed that, although iHTNs maintain a fetal identity, they respond appropriately to metabolic hormones ghrelin and leptin. Notably, OBS iHTNs retained disease signatures and phenotypes of high BMI, exhibiting dysregulated respiratory function, ghrelin-leptin signaling, axonal guidance, glutamate receptors, and endoplasmic reticulum (ER) stress pathways. Thus, human iHTNs provide a powerful platform to study obesity and gene-environment interactions.

Collaboration


Dive into the Brooke E. Hjelm's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brandi Rollins

University of California

View shared research outputs
Top Co-Authors

Avatar

Hugh S. Mason

Arizona State University

View shared research outputs
Top Co-Authors

Avatar

Qiang Chen

Arizona State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhong Huang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Allen M. Andres

Cedars-Sinai Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge