Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bruce A. Buchholz is active.

Publication


Featured researches published by Bruce A. Buchholz.


Science | 2009

Evidence for Cardiomyocyte Renewal in Humans

Olaf Bergmann; Ratan D. Bhardwaj; Samuel Bernard; Sofia Zdunek; Fanie Barnabé-Heider; Stuart Walsh; Joel Zupicich; Kanar Alkass; Bruce A. Buchholz; Henrik Druid; Stefan Jovinge; Jonas Frisén

It has been difficult to establish whether we are limited to the heart muscle cells we are born with or if cardiomyocytes are generated also later in life. We have taken advantage of the integration of carbon-14, generated by nuclear bomb tests during the Cold War, into DNA to establish the age of cardiomyocytes in humans. We report that cardiomyocytes renew, with a gradual decrease from 1% turning over annually at the age of 25 to 0.45% at the age of 75. Fewer than 50% of cardiomyocytes are exchanged during a normal life span. The capacity to generate cardiomyocytes in the adult human heart suggests that it may be rational to work toward the development of therapeutic strategies aimed at stimulating this process in cardiac pathologies.


Nature | 2008

Dynamics of fat cell turnover in humans

Kirsty L. Spalding; Erik Arner; Pål O. Westermark; Samuel Bernard; Bruce A. Buchholz; Olaf L Bergmann; Lennart Blomqvist; Johan Hoffstedt; Erik Näslund; Tom Britton; Hernan Concha; Moustapha Hassan; Mikael Rydén; Jonas Frisén; Peter Arner

Obesity is increasing in an epidemic manner in most countries and constitutes a public health problem by enhancing the risk for cardiovascular disease and metabolic disorders such as type 2 diabetes. Owing to the increase in obesity, life expectancy may start to decrease in developed countries for the first time in recent history. The factors determining fat mass in adult humans are not fully understood, but increased lipid storage in already developed fat cells (adipocytes) is thought to be most important. Here we show that adipocyte number is a major determinant for the fat mass in adults. However, the number of fat cells stays constant in adulthood in lean and obese individuals, even after marked weight loss, indicating that the number of adipocytes is set during childhood and adolescence. To establish the dynamics within the stable population of adipocytes in adults, we have measured adipocyte turnover by analysing the integration of 14C derived from nuclear bomb tests in genomic DNA. Approximately 10% of fat cells are renewed annually at all adult ages and levels of body mass index. Neither adipocyte death nor generation rate is altered in early onset obesity, suggesting a tight regulation of fat cell number in this condition during adulthood. The high turnover of adipocytes establishes a new therapeutic target for pharmacological intervention in obesity.


Cell | 2013

Dynamics of Hippocampal Neurogenesis in Adult Humans

Kirsty L. Spalding; Olaf Bergmann; Kanar Alkass; Samuel Bernard; Mehran Salehpour; Hagen B. Huttner; Emil Boström; Isabelle Westerlund; Céline Vial; Bruce A. Buchholz; Göran Possnert; Deborah C. Mash; Henrik Druid; Jonas Frisén

Adult-born hippocampal neurons are important for cognitive plasticity in rodents. There is evidence for hippocampal neurogenesis in adult humans, although whether its extent is sufficient to have functional significance has been questioned. We have assessed the generation of hippocampal cells in humans by measuring the concentration of nuclear-bomb-test-derived ¹⁴C in genomic DNA, and we present an integrated model of the cell turnover dynamics. We found that a large subpopulation of hippocampal neurons constituting one-third of the neurons is subject to exchange. In adult humans, 700 new neurons are added in each hippocampus per day, corresponding to an annual turnover of 1.75% of the neurons within the renewing fraction, with a modest decline during aging. We conclude that neurons are generated throughout adulthood and that the rates are comparable in middle-aged humans and mice, suggesting that adult hippocampal neurogenesis may contribute to human brain function.


Cell | 2005

Retrospective birth dating of cells in humans.

Kirsty L. Spalding; Ratan D. Bhardwaj; Bruce A. Buchholz; Henrik Druid; Jonas Frisén

The generation of cells in the human body has been difficult to study, and our understanding of cell turnover is limited. Testing of nuclear weapons resulted in a dramatic global increase in the levels of the isotope 14C in the atmosphere, followed by an exponential decrease after 1963. We show that the level of 14C in genomic DNA closely parallels atmospheric levels and can be used to establish the time point when the DNA was synthesized and cells were born. We use this strategy to determine the age of cells in the cortex of the adult human brain and show that whereas nonneuronal cells are exchanged, occipital neurons are as old as the individual, supporting the view that postnatal neurogenesis does not take place in this region. Retrospective birth dating is a generally applicable strategy that can be used to measure cell turnover in man under physiological and pathological conditions.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Neocortical neurogenesis in humans is restricted to development.

Ratan D. Bhardwaj; Maurice A. Curtis; Kirsty L. Spalding; Bruce A. Buchholz; David Fink; Thomas Björk-Eriksson; Claes Nordborg; Fred H. Gage; Henrik Druid; Peter Eriksson; Jonas Frisén

Stem cells generate neurons in discrete regions in the postnatal mammalian brain. However, the extent of neurogenesis in the adult human brain has been difficult to establish. We have taken advantage of the integration of 14C, generated by nuclear bomb tests during the Cold War, in DNA to establish the age of neurons in the major areas of the human cerebral neocortex. Together with the analysis of the neocortex from patients who received BrdU, which integrates in the DNA of dividing cells, our results demonstrate that, whereas nonneuronal cells turn over, neurons in the human cerebral neocortex are not generated in adulthood at detectable levels but are generated perinatally.


Circulation Research | 2010

Myocyte Turnover in the Aging Human Heart

Jan Kajstura; Narasimman Gurusamy; Barbara Ogorek; Polina Goichberg; Carlos Clavo-Rondon; Toru Hosoda; Domenico D'Amario; Silvana Bardelli; Antonio Paolo Beltrami; Daniela Cesselli; Rossana Bussani; Federica del Monte; Federico Quaini; Marcello Rota; Carlo Alberto Beltrami; Bruce A. Buchholz; Annarosa Leri; Piero Anversa

Rationale: The turnover of cardiomyocytes in the aging female and male heart is currently unknown, emphasizing the need to define human myocardial biology. Objective: The effects of age and gender on the magnitude of myocyte regeneration and the origin of newly formed cardiomyocytes were determined. Methods and Results: The interaction of myocyte replacement, cellular senescence, growth inhibition, and apoptosis was measured in normal female (n=32) and male (n=42) human hearts collected from patients 19 to 104 years of age who died from causes other than cardiovascular diseases. A progressive loss of telomeric DNA in human cardiac stem cells (hCSCs) occurs with aging and the newly formed cardiomyocytes inherit short telomeres and rapidly reach the senescent phenotype. Our data provide novel information on the superior ability of the female heart to sustain the multiple variables associated with the development of the senescent myopathy. At all ages, the female heart is equipped with a larger pool of functionally competent hCSCs and younger myocytes than the male myocardium. The replicative potential is higher and telomeres are longer in female hCSCs than in male hCSCs. In the female heart, myocyte turnover occurs at a rate of 10%, 14%, and 40% per year at 20, 60, and 100 years of age, respectively. Corresponding values in the male heart are 7%, 12%, and 32% per year, documenting that cardiomyogenesis involves a large and progressively increasing number of parenchymal cells with aging. From 20 to 100 years of age, the myocyte compartment is replaced 15 times in women and 11 times in men. Conclusions: The human heart is a highly dynamic organ regulated by a pool of resident hCSCs that modulate cardiac homeostasis and condition organ aging.


Nature | 2011

Dynamics of human adipose lipid turnover in health and metabolic disease

Peter Arner; Samuel Bernard; Mehran Salehpour; Göran Possnert; Jakob Liebl; Peter Steier; Bruce A. Buchholz; Mats Eriksson; Erik Arner; Hans Hauner; Thomas Skurk; Mikael Rydén; Keith N. Frayn; Kirsty L. Spalding

Adipose tissue mass is determined by the storage and removal of triglycerides in adipocytes. Little is known, however, about adipose lipid turnover in humans in health and pathology. To study this in vivo, here we determined lipid age by measuring 14C derived from above ground nuclear bomb tests in adipocyte lipids. We report that during the average ten-year lifespan of human adipocytes, triglycerides are renewed six times. Lipid age is independent of adipocyte size, is very stable across a wide range of adult ages and does not differ between genders. Adipocyte lipid turnover, however, is strongly related to conditions with disturbed lipid metabolism. In obesity, triglyceride removal rate (lipolysis followed by oxidation) is decreased and the amount of triglycerides stored each year is increased. In contrast, both lipid removal and storage rates are decreased in non-obese patients diagnosed with the most common hereditary form of dyslipidaemia, familial combined hyperlipidaemia. Lipid removal rate is positively correlated with the capacity of adipocytes to break down triglycerides, as assessed through lipolysis, and is inversely related to insulin resistance. Our data support a mechanism in which adipocyte lipid storage and removal have different roles in health and pathology. High storage but low triglyceride removal promotes fat tissue accumulation and obesity. Reduction of both triglyceride storage and removal decreases lipid shunting through adipose tissue and thus promotes dyslipidaemia. We identify adipocyte lipid turnover as a novel target for prevention and treatment of metabolic disease.


Circulation | 2012

Cardiomyogenesis in the Aging and Failing Human Heart

Jan Kajstura; Marcello Rota; Donato Cappetta; Barbara Ogorek; Christian Arranto; Yingnan Bai; João Ferreira-Martins; Sergio Signore; Fumihiro Sanada; Alex Matsuda; James Kostyla; Maria Virginia Caballero; Claudia Fiorini; David A. D'Alessandro; Robert E. Michler; Federica del Monte; Toru Hosoda; Mark A. Perrella; Annarosa Leri; Bruce A. Buchholz; Joseph Loscalzo; Piero Anversa

Background— Two opposite views of cardiac growth are currently held; one views the heart as a static organ characterized by a large number of cardiomyocytes that are present at birth and live as long as the organism, and the other views the heart a highly plastic organ in which the myocyte compartment is restored several times during the course of life. Methods and Results— The average age of cardiomyocytes, vascular endothelial cells (ECs), and fibroblasts and their turnover rates were measured by retrospective 14C birth dating of cells in 19 normal hearts 2 to 78 years of age and in 17 explanted failing hearts 22 to 70 years of age. We report that the human heart is characterized by a significant turnover of ventricular myocytes, ECs, and fibroblasts, physiologically and pathologically. Myocyte, EC, and fibroblast renewal is very high shortly after birth, decreases during postnatal maturation, remains relatively constant in the adult organ, and increases dramatically with age. From 20 to 78 years of age, the adult human heart entirely replaces its myocyte, EC, and fibroblast compartment ≈8, ≈6, and ≈8 times, respectively. Myocyte, EC, and fibroblast regeneration is further enhanced with chronic heart failure. Conclusions— The human heart is a highly dynamic organ that retains a remarkable degree of plasticity throughout life and in the presence of chronic heart failure. However, the ability to regenerate cardiomyocytes, vascular ECs, and fibroblasts cannot prevent the manifestations of myocardial aging or oppose the negative effects of ischemic and idiopathic dilated cardiomyopathy.


Biometrics | 2003

Shrinkage Estimation for Functional Principal Component Scores with Application to the Population Kinetics of Plasma Folate

Hans-Georg Müller; Andrew J. Clifford; S. R. Dueker; Jennifer R. Follett; Yumei Lin; Bruce A. Buchholz; John S. Vogel

We present the application of a nonparametric method to performing functional principal component analysis for functional curve data that consist of measurements of a random trajectory for a sample of subjects. This design typically consists of an irregular grid of time points on which repeated measurements are taken for a number of subjects. We introduce shrinkage estimates for the functional principal component scores that serve as the random effects in the model. Scatterplot smoothing methods are used to estimate the mean function and covariance surface of this model. We propose improved estimation in the neighborhood of and at the diagonal of the covariance surface, where the measurement errors are reflected. The presence of additive measurement errors motivates shrinkage estimates for the functional principal component scores. Shrinkage estimates are developed through best linear prediction and in a generalized version, aiming at minimizing one-curve-leave-out prediction error. The estimation of individual trajectories combines data obtained from that individual as well as all other individuals. We apply our methods to new data regarding the analysis of the level of 14C-folate in plasma as a function of time since dosing of healthy adults with a small tracer dose of 14C-folic acid. A time transformation was incorporated to handle design irregularity concerning the time points on which the measurements were taken. The proposed methodology, incorporating shrinkage and data-adaptive features, is seen to be well suited for describing population kinetics of 14C-folate-specific activity and random effects, and can also be applied to other functional data analysis problems.


Spring Fuels & Lubricants Meeting & Exhibition | 2002

The Effect of Oxygenates on Diesel Engine Particulate Matter

A. S. Cheng; Robert W. Dibble; Bruce A. Buchholz

A summary is presented of experimental results obtained from a Cummins B5.9 175 hp, direct-injected diesel engine fueled with oxygenated diesel blends. The oxygenates tested were dimethoxy methane (DMM), diethyl ether, a blend of monoglyme and diglyme, and ethanol. The experimental results show that particulate matter (PM) reduction is controlled largely by the oxygen content of the blend fuel. For the fuels tested, the effect of chemical structure was observed to be small. Isotopic tracer tests with ethanol blends reveal that carbon from ethanol does contribute to soot formation, but is about 50% less likely to form soot when compared to carbon from the diesel portion of the fuel. Numerical modeling was carried out to investigate the effect of oxygenate addition on soot formation. This effort was conducted using a chemical kinetic mechanism incorporating n-heptane, DMM and ethanol chemistry, along with reactions describing soot formation. Results show that oxygenates reduce the production of soot precursors (and therefore soot and PM) through several key mechanisms. The first is due to the natural shift in pyrolysis and decomposition products. In addition, high radical concentrations produced by oxygenate addition promote carbon oxidation to CO and CO2, limiting carbon availability for soot precursor formation. Additionally, high radical concentrations (primarily OH) serve to limit aromatic ring growth and soot particle inception.

Collaboration


Dive into the Bruce A. Buchholz's collaboration.

Top Co-Authors

Avatar

John S. Vogel

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kurt W. Haack

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert W. Dibble

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge