Bruce A. Curtis
Dalhousie University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bruce A. Curtis.
Proceedings of the National Academy of Sciences of the United States of America | 2001
Qunxin She; Rama K. Singh; Fabrice Confalonieri; Yvan Zivanovic; Ghislaine Allard; Mariana J. Awayez; Christina C.-Y. Chan-Weiher; Ib Groth Clausen; Bruce A. Curtis; Anick De Moors; G. Erauso; Cynthia Fletcher; Paul M. K. Gordon; Ineke Heikamp-de Jong; Alex C. Jeffries; Catherine Kozera; Nadine Medina; Xu Peng; Hoa Phan Thi-Ngoc; Peter Redder; Margaret E. Schenk; Cynthia Theriault; Niels Tolstrup; Robert L. Charlebois; W. Ford Doolittle; Michel Duguet; Terry Gaasterland; Roger A. Garrett; Mark A. Ragan; Christoph W. Sensen
The genome of the crenarchaeon Sulfolobus solfataricus P2 contains 2,992,245 bp on a single chromosome and encodes 2,977 proteins and many RNAs. One-third of the encoded proteins have no detectable homologs in other sequenced genomes. Moreover, 40% appear to be archaeal-specific, and only 12% and 2.3% are shared exclusively with bacteria and eukarya, respectively. The genome shows a high level of plasticity with 200 diverse insertion sequence elements, many putative nonautonomous mobile elements, and evidence of integrase-mediated insertion events. There are also long clusters of regularly spaced tandem repeats. Different transfer systems are used for the uptake of inorganic and organic solutes, and a wealth of intracellular and extracellular proteases, sugar, and sulfur metabolizing enzymes are encoded, as well as enzymes of the central metabolic pathways and motility proteins. The major metabolic electron carrier is not NADH as in bacteria and eukarya but probably ferredoxin. The essential components required for DNA replication, DNA repair and recombination, the cell cycle, transcriptional initiation and translation, but not DNA folding, show a strong eukaryal character with many archaeal-specific features. The results illustrate major differences between crenarchaea and euryarchaea, especially for their DNA replication mechanism and cell cycle processes and their translational apparatus.
Nature | 2012
Bruce A. Curtis; Goro Tanifuji; Fabien Burki; Ansgar Gruber; Manuel Irimia; Shinichiro Maruyama; Maria Cecilia Arias; Steven G. Ball; Gillian H. Gile; Yoshihisa Hirakawa; Julia F. Hopkins; Alan Kuo; Stefan A. Rensing; Jeremy Schmutz; Aikaterini Symeonidi; Marek Eliáš; Robert J M Eveleigh; Emily K. Herman; Mary J. Klute; Takuro Nakayama; Miroslav Oborník; Adrian Reyes-Prieto; E. Virginia Armbrust; Stephen J. Aves; Robert G. Beiko; Pedro M. Coutinho; Joel B. Dacks; Dion G. Durnford; Naomi M. Fast; Beverley R. Green
Cryptophyte and chlorarachniophyte algae are transitional forms in the widespread secondary endosymbiotic acquisition of photosynthesis by engulfment of eukaryotic algae. Unlike most secondary plastid-bearing algae, miniaturized versions of the endosymbiont nuclei (nucleomorphs) persist in cryptophytes and chlorarachniophytes. To determine why, and to address other fundamental questions about eukaryote–eukaryote endosymbiosis, we sequenced the nuclear genomes of the cryptophyte Guillardia theta and the chlorarachniophyte Bigelowiella natans. Both genomes have >21,000 protein genes and are intron rich, and B. natans exhibits unprecedented alternative splicing for a single-celled organism. Phylogenomic analyses and subcellular targeting predictions reveal extensive genetic and biochemical mosaicism, with both host- and endosymbiont-derived genes servicing the mitochondrion, the host cell cytosol, the plastid and the remnant endosymbiont cytosol of both algae. Mitochondrion-to-nucleus gene transfer still occurs in both organisms but plastid-to-nucleus and nucleomorph-to-nucleus transfers do not, which explains why a small residue of essential genes remains locked in each nucleomorph.
BMC Genomics | 2008
Michael Reith; Rama K. Singh; Bruce A. Curtis; Jessica M Boyd; Anne Bouevitch; Jennifer Kimball; Janet Munholland; Colleen Murphy; Darren Sarty; Jason Williams; John H. E. Nash; Stewart C. Johnson; Laura L. Brown
BackgroundAeromonas salmonicida subsp. salmonicida is a Gram-negative bacterium that is the causative agent of furunculosis, a bacterial septicaemia of salmonid fish. While other species of Aeromonas are opportunistic pathogens or are found in commensal or symbiotic relationships with animal hosts, A. salmonicida subsp. salmonicida causes disease in healthy fish. The genome sequence of A. salmonicida was determined to provide a better understanding of the virulence factors used by this pathogen to infect fish.ResultsThe nucleotide sequences of the A. salmonicida subsp. salmonicida A449 chromosome and two large plasmids are characterized. The chromosome is 4,702,402 bp and encodes 4388 genes, while the two large plasmids are 166,749 and 155,098 bp with 178 and 164 genes, respectively. Notable features are a large inversion in the chromosome and, in one of the large plasmids, the presence of a Tn21 composite transposon containing mercury resistance genes and an In2 integron encoding genes for resistance to streptomycin/spectinomycin, quaternary ammonia compounds, sulphonamides and chloramphenicol. A large number of genes encoding potential virulence factors were identified; however, many appear to be pseudogenes since they contain insertion sequences, frameshifts or in-frame stop codons. A total of 170 pseudogenes and 88 insertion sequences (of ten different types) are found in the A. salmonicida genome. Comparison with the A. hydrophila ATCC 7966T genome reveals multiple large inversions in the chromosome as well as an approximately 9% difference in gene content indicating instances of single gene or operon loss or gain.A limited number of the pseudogenes found in A. salmonicida A449 were investigated in other Aeromonas strains and species. While nearly all the pseudogenes tested are present in A. salmonicida subsp. salmonicida strains, only about 25% were found in other A. salmonicida subspecies and none were detected in other Aeromonas species.ConclusionRelative to the A. hydrophila ATCC 7966T genome, the A. salmonicida subsp. salmonicida genome has acquired multiple mobile genetic elements, undergone substantial rearrangement and developed a significant number of pseudogenes. These changes appear to be a consequence of adaptation to a specific host, salmonid fish, and provide insights into the mechanisms used by the bacterium for infection and avoidance of host defence systems.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Christopher E. Lane; Krystal van den Heuvel; Catherine Kozera; Bruce A. Curtis; Byron J. Parsons; Sharen Bowman; John M. Archibald
Nucleomorphs are the remnant nuclei of algal endosymbionts that took up residence inside a nonphotosynthetic eukaryotic host. The nucleomorphs of cryptophytes and chlorarachniophytes are derived from red and green algal endosymbionts, respectively, and represent a stunning example of convergent evolution: their genomes have independently been reduced and compacted to <1 megabase pairs (Mbp) in size (the smallest nuclear genomes known) and to a similar three-chromosome architecture. The molecular processes underlying genome reduction and compaction in eukaryotes are largely unknown, as is the impact of reduction/compaction on protein structure and function. Here, we present the complete 0.572-Mbp nucleomorph genome of the cryptophyte Hemiselmis andersenii and show that it is completely devoid of spliceosomal introns and genes for splicing RNAs—a case of complete intron loss in a nuclear genome. Comparison of H. andersenii proteins to those encoded in the slightly smaller (0.551-Mbp) nucleomorph genome of another cryptophyte, Guillardia theta, and to their homologs in the unicellular red alga Cyanidioschyzon merolae reveal that (i) cryptophyte nucleomorph genomes encode proteins that are significantly smaller than those in their free-living algal ancestors, and (ii) the smaller, more compact G. theta nucleomorph genome encodes significantly smaller proteins than that of H. andersenii. These results indicate that genome compaction can eliminate both coding and noncoding DNA and, consequently, drive the evolution of protein structure and function. Nucleomorph proteins have the potential to reveal the minimal functional units required for basic eukaryotic cellular processes.
Extremophiles | 1998
Christoph W. Sensen; Robert L. Charlebois; C. Chow; Ib Groth Clausen; Bruce A. Curtis; W.F. Doolittle; Michel Duguet; G. Erauso; Terry Gaasterland; Roger A. Garrett; Paul M. K. Gordon
Abstract The Sulfolobus solfataricus P2 genome collaborators are poised to sequence the entire 3-Mbp genome of this crenarchaeote archaeon. About 80% of the genome has been sequenced to date, with the rest of the sequence being assembled fast. In this publication we introduce the genomic sequencing and automated analysis strategy and present intial data derived from the sequence analysis. After an overview of the general sequence features, metabolic pathway studies are explained, using sugar metabolism as an example. The paper closes with an overview of repetitive elements in S. solfataricus.
Marine Biotechnology | 2011
Sharen Bowman; Sophie Hubert; Brent Higgins; Cynthia Stone; Jennifer Kimball; Tudor Borza; Jillian Tarrant Bussey; Gary Simpson; Catherine Kozera; Bruce A. Curtis; Jennifer R. Hall; Tiago S. Hori; Charles Y. Feng; Marlies Rise; Marije Booman; A. Kurt Gamperl; Edward A. Trippel; Jane E. Symonds; Stewart C. Johnson; Matthew L. Rise
Atlantic cod is a species that has been overexploited by the capture fishery. Programs to domesticate this species are underway in several countries, including Canada, to provide an alternative route for production. Selective breeding programs have been successfully applied in the domestication of other species, with genomics-based approaches used to augment conventional methods of animal production in recent years. Genomics tools, such as gene sequences and sets of variable markers, also have the potential to enhance and accelerate selective breeding programs in aquaculture, and to provide better monitoring tools to ensure that wild cod populations are well managed. We describe the generation of significant genomics resources for Atlantic cod through an integrated genomics/selective breeding approach. These include 158,877 expressed sequence tags (ESTs), a set of annotated putative transcripts and several thousand single nucleotide polymorphism markers that were developed from, and have been shown to be highly variable in, fish enrolled in two selective breeding programs. Our EST collection was generated from various tissues and life cycle stages. In some cases, tissues from which libraries were generated were isolated from fish exposed to stressors, including elevated temperature, or antigen stimulation (bacterial and viral) to enrich for transcripts that are involved in these response pathways. The genomics resources described here support the developing aquaculture industry, enabling the application of molecular markers within selective breeding programs. Marker sets should also find widespread application in fisheries management.
PLOS ONE | 2009
Jeremy E. Koenig; Christine Sharp; Marlena Dlutek; Bruce A. Curtis; Michael J Joss; Yan Boucher; W. Ford Doolittle
Integrons are genetic platforms that accelerate lateral gene transfer (LGT) among bacteria. They were first detected on plasmids bearing single and multiple drug resistance determinants in human pathogens, and it is abundantly clear that integrons have played a major role in the evolution of this public health menace. Similar genetic elements can be found in nonpathogenic environmental bacteria and in metagenomic environmental DNA samples, and it is reasonable to suppose that integrons have facilitated microbial adaptation through LGT in niches outside infectious disease wards. Here we show that a heavily impacted estuary, exposed for almost a century to products of coal and steel industries, has developed a rich and unique cassette metagenome, containing genes likely to aid in the catabolism of compounds associated with industrial waste found there. In addition, we report that the most abundant cassette recovered in this study is one that encodes a putative LysR protein. This autoregulatory transcriptional regulator is known to activate transcription of linked target genes or unlinked regulons encoding diverse functions including chlorocatechol and dichlorophenol catabolism. Finally, only class 1 integrase genes were amplified in this study despite using different primer sets, and it may be that the cassettes present in the Tar Ponds will prove to be associated with class 1 integrase genes. Nevertheless, our cassette library provides a snapshot of a complex evolutionary process involving integron-meditated LGT likely to be important in natural bioremediation.
Genome Biology and Evolution | 2012
Christa E. Moore; Bruce A. Curtis; Tyler Mills; Goro Tanifuji; John M. Archibald
Cryptophytes are a diverse lineage of marine and freshwater, photosynthetic and secondarily nonphotosynthetic algae that acquired their plastids (chloroplasts) by “secondary” (i.e., eukaryote–eukaryote) endosymbiosis. Consequently, they are among the most genetically complex cells known and have four genomes: a mitochondrial, plastid, “master” nuclear, and residual nuclear genome of secondary endosymbiotic origin, the so-called “nucleomorph” genome. Sequenced nucleomorph genomes are ∼1,000-kilobase pairs (Kbp) or less in size and are comprised of three linear, compositionally biased chromosomes. Although most functionally annotated nucleomorph genes encode proteins involved in core eukaryotic processes, up to 40% of the genes in these genomes remain unidentifiable. To gain insight into the function and evolutionary fate of nucleomorph genomes, we used 454 and Illumina technologies to completely sequence the nucleomorph genome of the cryptophyte Chroomonas mesostigmatica CCMP1168. At 702.9 Kbp in size, the C. mesostigmatica nucleomorph genome is the largest and the most complex nucleomorph genome sequenced to date. Our comparative analyses reveal the existence of a highly conserved core set of genes required for maintenance of the cryptophyte nucleomorph and plastid, as well as examples of lineage-specific gene loss resulting in differential loss of typical eukaryotic functions, e.g., proteasome-mediated protein degradation, in the four cryptophyte lineages examined.
The ISME Journal | 2011
Jeremy E. Koenig; David G. Bourne; Bruce A. Curtis; Marlena Dlutek; H. W. Stokes; W. Ford Doolittle; Yan Boucher
Integron cassette arrays in a dozen cultivars of the most prevalent group of Vibrio isolates obtained from mucus expelled by a scleractinian coral (Pocillopora damicornis) colony living on the Great Barrier Reef were sequenced and compared. Although all cultivars showed >99% identity across recA, pyrH and rpoB genes, no two had more than 10% of their integron-associated gene cassettes in common, and some individuals shared cassettes exclusively with distantly-related members of the genus. Of cassettes shared within the population, a number appear to have been transferred between Vibrio isolates, as assessed by phylogenetic analysis. Prominent among the mucus Vibrio cassettes with potentially inferable functions are acetyltransferases, some with close similarity to known antibiotic-resistance determinants. A subset of these potential resistance cassettes were shared exclusively between the mucus Vibrio cultivars, Vibrio coral pathogens and human pathogens, thus illustrating a direct link between these microbial niches through exchange of integron-associated gene cassettes.
Current Biology | 2017
Laura Eme; Eleni Gentekaki; Bruce A. Curtis; John M. Archibald; Andrew J. Roger
Blastocystis spp. are the most prevalent eukaryotic microbes found in the intestinal tract of humans. Here we present an in-depth investigation of lateral gene transfer (LGT) in the genome of Blastocystis sp. subtype 1. Using rigorous phylogeny-based methods and strict validation criteria, we show that ∼2.5% of the genes of this organism were recently acquired by LGT. We identify LGTs both from prokaryote and eukaryote donors. Several transfers occurred specifically in ancestors of a subset of Blastocystis subtypes, demonstrating that LGT is an ongoing process. Functional predictions reveal that these genes are involved in diverse metabolic pathways, many of which appear related to adaptation of Blastocystis to the gut environment. Specifically, we identify genes involved in carbohydrate scavenging and metabolism, anaerobic amino acid and nitrogen metabolism, oxygen-stress resistance, and pH homeostasis. A number of the transferred genes encoded secreted proteins that are potentially involved in infection, escaping host defense, or most likely affect the prokaryotic microbiome and the inflammation state of the gut. We also show that Blastocystis subtypes differ in the nature and copy number of LGTs that could relate to variation in their prevalence and virulence. Finally, we identified bacterial-derived genes encoding NH3-dependent nicotinamide adenine dinucleotide (NAD) synthase in Blastocystis and other protozoan parasites, which are promising targets for drug development. Collectively, our results suggest new avenues for research into the role of Blastocystis in intestinal disease and unequivocally demonstrate that LGT is an important mechanism by which eukaryotic microbes adapt to new environments.