Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bruce A. Luxon is active.

Publication


Featured researches published by Bruce A. Luxon.


Journal of Virology | 2004

Intrahepatic gene expression during chronic hepatitis C virus infection in chimpanzees

Catherine B. Bigger; Bernadette Guerra; Kathleen M. Brasky; Gene B. Hubbard; Michael R. Beard; Bruce A. Luxon; Stanley M. Lemon; Robert E. Lanford

ABSTRACT Hepatitis C virus (HCV) infections represent a global health problem and are a major contributor to end-stage liver disease including cirrhosis and hepatocellular carcinoma. An improved understanding of the parameters involved in disease progression is needed to develop better therapies and diagnostic markers of disease manifestation. To better understand the dynamics of host gene expression resulting from persistent virus infection, DNA microarray analyses were conducted on livers from 10 chimpanzees persistently infected with HCV. A total of 162 genes were differentially regulated in chronically infected animals compared to uninfected controls. Many genes exhibited a remarkable consistency in changes in expression in the 10 chronically infected animals. A second method of analysis identified 971 genes altered in expression during chronic infection at a 99% confidence level. As with acute-resolving HCV infections, many interferon (IFN)-stimulated genes (ISGs) were transcriptionally elevated, suggesting an ongoing response to IFN and/or double-stranded RNA which is amplified in downstream ISG expression. Thus, persistent infection with HCV results in a complex and partially predictable pattern of gene expression, although the underlying mechanisms regulating the different pathways are not well defined. A single genotype 3-infected animal was available for analysis, and this animal exhibited reduced levels of ISG expression compared to levels of expression with genotype 1 infections and increased expression of a number of genes potentially involved in steatosis. Gene expression data in concert with other observations from HCV infections permit speculation on the regulation of specific aspects of HCV infection.


Journal of Virology | 2001

Expression of Respiratory Syncytial Virus-Induced Chemokine Gene Networks in Lower Airway Epithelial Cells Revealed by cDNA Microarrays

Yuhong Zhang; Bruce A. Luxon; Antonella Casola; Roberto P. Garofalo; Mohammad Jamaluddin; Allan R. Brasier

ABSTRACT The Paramyxovirus respiratory syncytial virus (RSV) is the primary etiologic agent of serious epidemic lower respiratory tract disease in infants, immunosuppressed patients, and the elderly. Lower tract infection with RSV is characterized by a pronounced peribronchial mononuclear infiltrate, with eosinophilic and basophilic degranulation. Because RSV replication is restricted to airway epithelial cells, where RSV replication induces potent expression of chemokines, the epithelium is postulated to be a primary initiator of pulmonary inflammation in RSV infection. The spectrum of RSV-induced chemokines expressed by alveolar epithelial cells has not been fully investigated. In this report, we profile the kinetics and patterns of chemokine expression in RSV-infected lower airway epithelial cells (A549 and SAE). In A549 cells, membrane-based cDNA macroarrays and high-density oligonucleotide probe-based microarrays identified inducible expression of CC (I-309, Exodus-1, TARC, RANTES, MCP-1, MDC, and MIP-1α and -1β), CXC (GRO-α, -β, and -γ, ENA-78, interleukin-8 [IL-8], and I-TAC), and CX3C (Fractalkine) chemokines. Chemokines not previously known to be expressed by RSV-infected cells were independently confirmed by multiprobe RNase protection assay, Northern blotting, and reverse transcription-PCR. High-density microarrays performed on SAE cells confirmed a similar pattern of RSV-inducible expression of CC chemokines (Exodus-1, RANTES, and MIP-1α and -1β), CXC chemokines (I-TAC, GRO-α, -β, and -γ, and IL-8), and Fractalkine. In contrast, TARC, MCP-1, and MDC were not induced, suggesting the existence of distinct genetic responses for different types of airway-derived epithelial cells. Hierarchical clustering by agglomerative nesting and principal-component analyses were performed on A549-expressed chemokines; these analyses indicated that RSV-inducible chemokines are ordered into three related expression groups. These data profile the temporal changes in expression by RSV-infected lower airway epithelial cells of chemokines, chemotactic proteins which may be responsible for the complex cellular infiltrate in virus-induced respiratory inflammation.


Clinical Cancer Research | 2007

Secreted Frizzled-Related Protein 1 Loss Contributes to Tumor Phenotype of Clear Cell Renal Cell Carcinoma

Michelle L. Gumz; Hongzhi Zou; Pamela A. Kreinest; April C. Childs; Leandra S. Belmonte; Shauna N. LeGrand; Kevin J. Wu; Bruce A. Luxon; Mala Sinha; Alexander S. Parker; LuZhe Sun; David A. Ahlquist; Christopher G. Wood; John A. Copland

Purpose: Incidence and mortality rates for renal cell carcinoma (RCC) have been rising for decades. Unfortunately, the molecular events that support RCC carcinogenesis remain poorly understood. In an effort to gain a better understanding of signaling events in clear cell RCC (cRCC), we investigated the antitumor activity of secreted frizzled-related protein 1 (sFRP1), a negative regulator of Wnt signaling. Experimental Design: Genomic profiling of cRCC tumors and patient-matched normal tissues was done and confirmed using quantitative PCR and immunohistochemistry. Methylation-specific PCR was done on patient samples to evaluate the mechanism responsible for sFRP1 loss. sFRP1 expression was restored in cRCC cells and the effects on tumor phenotype were characterized. Results: Genomic profiling, quantitative PCR, and immunohistochemistry indicated that loss of sFRP1 occurred in cRCC and papillary RCC patient tissues. Twelve Wnt-regulated genes were up-regulated in cRCC tissues, including c-myc and cyclin D1, potentiators of cell proliferation and survival. Methylation of the sFRP1 gene was one mechanism identified for attenuation of sFRP1 mRNA. Stable reexpression of sFRP1 in cRCC cells resulted in decreased expression of Wnt target genes, decreased growth in cell culture, inhibition of anchorage-independent growth, and decreased tumor growth in athymic nude mice. Conclusions: To our knowledge, this is the first report to show that stable restoration of sFRP1 expression in cRCC cells attenuates the cRCC tumor phenotype. Our data support a role for sFRP1 as a tumor suppressor in cRCC and that perhaps loss of sFRP1 is an early, aberrant molecular event in renal cell carcinogenesis.


Journal of Virology | 2002

Identification of NF-κB-Dependent Gene Networks in Respiratory Syncytial Virus-Infected Cells

Bing Tian; Yuhong Zhang; Bruce A. Luxon; Roberto P. Garofalo; Antonella Casola; Mala Sinha; Allan R. Brasier

ABSTRACT Respiratory syncytial virus (RSV) is a mucosa-restricted virus that is a leading cause of epidemic respiratory tract infections in children. In epithelial cells, RSV replication activates nuclear translocation of the inducible transcription factor nuclear factor κB (NF-κB) through proteolysis of its cytoplasmic inhibitor, IκB. In spite of a putative role in mediating virus-inducible gene expression, the spectrum of NF-κB-dependent genes induced by RSV infection has not yet been determined. To address this, we developed a tightly regulated cell system expressing a nondegradable, epitope-tagged IκBα isoform (Flag-IκBα Mut) whose expression could be controlled by exogenous addition of nontoxic concentrations of doxycycline. Flag-IκBα Mut expression potently inhibited IκBα proteolysis, NF-κB binding, and NF-κB-dependent gene transcription in cells stimulated with the prototypical NF-κB-activating cytokine tumor necrosis factor alpha (TNF-α) and in response to RSV infection. High-density oligonucleotide microarrays were then used to profile constitutive and RSV-induced gene expression in the absence or presence of Flag-IκBα Mut. Comparison of these profiles revealed 380 genes whose expression was significantly changed by the dominant-negative NF-κB. Of these, 236 genes were constitutive (not RSV regulated), and surprisingly, only 144 genes were RSV regulated, representing numerically ∼10% of the total population of RSV-inducible genes at this time point. Hierarchical clustering of the 144 RSV- and Flag-IκBα Mut-regulated genes identified two discrete gene clusters. The first group had high constitutive expression, and its expression levels fell in response to RSV infection. In this group, constitutive mRNA expression was increased by Flag-IκBα Mut expression, and the RSV-induced decrease in expression was partly inhibited. In the second group, constitutive expression was very low (or undetectable) and, after RSV infection, expression levels strongly increased. In this group, NF-κB was required for RSV-inducible expression because Flag-IκBα Mut expression blocked their induction by RSV. This latter cluster includes chemokines, transcriptional regulators, intracellular proteins regulating translation and proteolysis, and secreted proteins (complement components and growth factor regulators). These data suggest that NF-κB action induces global cellular responses after viral infection.


Journal of Biological Chemistry | 2009

Integrin α6β4 Controls the Expression of Genes Associated with Cell Motility, Invasion, and Metastasis, Including S100A4/Metastasin

Min Chen; Mala Sinha; Bruce A. Luxon; Anne R. Bresnick; Kathleen L. O'Connor

The integrin α6β4 is associated with carcinoma progression by contributing to apoptosis resistance, invasion, and metastasis, due in part to the activation of select transcription factors. To identify genes regulated by the α6β4 integrin, we compared gene expression profiles of MDA-MB-435 cells that stably express integrin α6β4 (MDA/β4) and vector-only-transfected cells (MDA/mock) using Affymetrix GeneChip® analysis. Our results show that integrin α6β4 altered the expression of 538 genes (p < 0.01). Of these genes, 36 are associated with pathways implicated in cell motility and metastasis, including S100A4/metastasin. S100A4 expression correlated well with integrin α6β4 expression in established cell lines. Suppression of S100A4 by small interference RNA resulted in a reduced capacity of α6β4-expressing cells to invade a reconstituted basement membrane in response to lysophosphatidic acid. Using small interference RNA, promoter analysis, and chromatin immunoprecipitation, we demonstrate that S100A4 is regulated by NFAT5, thus identifying the first target of NFAT5 in cancer. In addition, several genes that are known to be regulated by DNA methylation were up-regulated dramatically by integrin α6β4 expression, including S100A4, FST, PDLIM4, CAPG, and Nkx2.2. Notably, inhibition of DNA methyltransferases stimulated expression of these genes in cells lacking the α6β4 integrin, whereas demethylase inhibitors suppressed expression in α6β4 integrin-expressing cells. Alterations in DNA methylation were confirmed by bisulfate sequencing, thus suggesting that integrin α6β4 signaling can lead to the demethylation of select promoters. In summary, our data suggest that integrin α6β4 confers a motile and invasive phenotype to breast carcinoma cells by regulating proinvasive and prometastatic gene expression.


PLOS ONE | 2010

Pathway Signature and Cellular Differentiation in Clear Cell Renal Cell Carcinoma

Han W. Tun; Laura A. Marlow; Christina A. von Roemeling; Simon J. Cooper; Pamela A. Kreinest; Kevin J. Wu; Bruce A. Luxon; Mala Sinha; Panos Z. Anastasiadis; John A. Copland

Background Clear cell renal cell carcinoma (ccRCC) is the most common kidney cancer. The purpose of this study is to define a biological pathway signature and a cellular differentiation program in ccRCC. Methodology We performed gene expression profiling of early-stage ccRCC and patient-matched normal renal tissue using Affymetrix HG-U133a and HG-U133b GeneChips combined with a comprehensive bioinformatic analyses, including pathway analysis. The results were validated by real time PCR and IHC on two independent sample sets. Cellular differentiation experiments were performed on ccRCC cell lines and their matched normal renal epithelial cells, in differentiation media, to determine their mesenchymal differentiation potential. Principal Findings We identified a unique pathway signature with three major biological alterations—loss of normal renal function, down-regulated metabolism, and immune activation–which revealed an adipogenic gene expression signature linked to the hallmark lipid-laden clear cell morphology of ccRCC. Culturing normal renal and ccRCC cells in differentiation media showed that only ccRCC cells were induced to undergo adipogenic and, surprisingly, osteogenic differentiation. A gene expression signature consistent with epithelial mesenchymal transition (EMT) was identified for ccRCC. We revealed significant down-regulation of four developmental transcription factors (GATA3, TFCP2L1, TFAP2B, DMRT2) that are important for normal renal development. Conclusions ccRCC is characterized by a lack of epithelial differentiation, mesenchymal/adipogenic transdifferentiation, and pluripotent mesenchymal stem cell-like differentiation capacity in vitro. We suggest that down-regulation of developmental transcription factors may mediate the aberrant differentiation in ccRCC. We propose a model in which normal renal epithelial cells undergo dedifferentiation, EMT, and adipogenic transdifferentiation, resulting in ccRCC. Because ccRCC cells grown in adipogenic media regain the characteristic ccRCC phenotype, we have indentified a new in vitro ccRCC cell model more resembling ccRCC tumor morphology.


Journal of Clinical Gastroenterology | 2006

APRI : An easy and validated predictor of hepatic fibrosis in chronic hepatitis C

Ned Snyder; Leka Gajula; Shu Yuan Xiao; James J. Grady; Bruce A. Luxon; Daryl Lau; Roger D. Soloway; John R. Petersen

Goals To evaluate the aspartate aminotransferase/platelet ratio index (APRI) as a predictor of the presence or absence of significant fibrosis on liver biopsy of patients with chronic hepatitis C (HCV). Background The decision to treat HCV is often made on the basis of the presence or absence of significant fibrosis on the liver biopsy. Because liver biopsy is expensive and invasive a noninvasive marker to evaluate hepatic fibrosis would be useful. The APRI is an easy to calculate index that is one of several markers that have been proposed. Study We retrospectively reviewed the charts of 339 patients with chronic HCV who had liver biopsies from January 2000 to March 2003. We subsequently evaluated 151 patients receiving pretreatment evaluation liver biopsies who had serum aspartate aminotransferase, platelets, routine liver function tests, and demographic data obtained. All liver biopsies were staged by the Batts Ludwig criteria. Results The area under the curve of the receiver operator characteristics of the calculated APRI compared with the liver biopsy demonstrated that the fibrosis score was 0.889 in the prospective group and 0.790 in the retrospective group. To achieve predictive values of approximately 90%, useful cutoffs were found at 0.40 and 1.5 in the retrospective study, and 0.42 and 1.2 in the prospective study leaving intermediate zones of 58.9% and 41.1%, respectively. In the prospective group, 34 of 36 patients with a value of <0.42 were accurately predicted as having mild fibrosis, whereas 50 of 54 patients with a value >1.2 were accurately predicted to have significant fibrosis. Conclusions The APRI is a good estimator of hepatic fibrosis and was more accurate in a prospective group than a retrospective one. It potentially could be used to decrease the number of liver biopsies.


Oncogene | 2003

Genomic profiling identifies alterations in TGFβ signaling through loss of TGFβ receptor expression in human renal cell carcinogenesis and progression

John A. Copland; Bruce A. Luxon; Laila Ajani; Tapati Maity; Erica L. Campagnaro; Huiping Guo; Shauna N. LeGrand; Pheroze Tamboli; Christopher G. Wood

Renal cell carcinoma (RCC) is a major health issue. Whereas localized disease can be cured surgically, there is no effective therapy for metastatic disease. The development of an effective therapy will require an understanding of the pathways that are important in RCC carcinogenesis and progression. Using genomic profiling of patient-matched tissue, we have identified aberrations in the transforming growth factor β (TGFβ) signaling pathway in RCC. We observed loss of type III TGFβ receptor (TBR3) expression in all RCC samples. This suggests that TBR3 loss is an early event in RCC carcinogenesis and plays a sentinel role in the acquisition of a tumorigenic phenotype. We also observed subsequent loss of type II TGFβ receptor (TBR2) expression in metastatic RCCs. We propose that loss of TBR3 is necessary for RCC carcinogenesis, and that loss of TBR2 leads to acquisition of a metastatic phenotype. To this end, we have identified a human renal cell carcinoma line (UMRC6) that is representative of localized, nonmetastatic RCC, reflecting a loss of TBR3, but not TBR2 expression. Another cell line, UMRC3, is highly metastatic, having lost TBR3 and TBR2 expression. We demonstrate functional loss of TGFβ responsiveness in these cell lines as observed through phenotypic and transcriptional responsiveness to exogenous TGFβ. Restoring TBR2 and TBR3 expression in UMRC3 cells attenuates cell proliferation, completely restores TGFβ-mediated transcriptional responses, and completely blocks anchorage independent-growth: while restoration of TBR2 partially restores TGFβ-mediated signaling. Based on these data, we propose that dysregulation in TGFβ signaling, through stepwise loss in receptor expression, plays a prominent role in RCC carcinogenesis and progression. In addition, these studies unequivocably demonstrate a link between loss of TBR3 and a human disease.


Journal of Virology | 2004

Virus-Host Cell Interactions during Hepatitis C Virus RNA Replication: Impact of Polyprotein Expression on the Cellular Transcriptome and Cell Cycle Association with Viral RNA Synthesis

Frank Scholle; Kui Li; Francis Bodola; Masanori Ikeda; Bruce A. Luxon; Stanley M. Lemon

ABSTRACT Considerable controversy surrounds the impact of hepatitis C virus (HCV) protein expression on viability of host cells and regulation of the cell cycle. Both promotion of cellular proliferation and apoptosis have been observed in different experimental systems. To determine whether expression of the entire complement of HCV proteins in the context of ongoing viral RNA replication significantly alters the host cell transcriptome and cell cycle regulatory processes, we carried out high-density oligonucleotide microarray studies and analyzed cell cycle distributions and S-phase entry in Huh7 cell clones harboring selectable, full-length, replicating HCV RNAs that express the entire genotype 1b, HCV-N polyprotein, and clonally related cells in which all viral RNA was eliminated by prior treatment with alpha interferon. Oligonucleotide microarray analyses revealed only subtle, coordinated differences in the mRNA profiles of cells containing replicating viral RNA and their interferon-cured progeny, with variation between different cell clones having a greater influence on the cellular transcriptome than the presence or absence of replicating HCV RNA. Flow cytometric analysis demonstrated no significant differences in cell cycle distribution among populations of asynchronously growing cells of both types. Cell lines containing replicating viral RNA and their interferon-cured progeny were able to reenter the cell cycle similarly after transient G1 arrest. In contrast, although viral protein expression and genome replication did not alter cell cycle control in these cells, HCV genome replication was highly dependent on cellular proliferation, with viral RNA synthesis strongly decreased in poorly proliferating, confluent, or serum-starved cells and substantially enhanced in the S phase of the cell cycle.


Journal of Biological Chemistry | 2006

Suppressing Wnt Signaling by the Hedgehog Pathway through sFRP-1

Jing He; Arwen A. Stelter; Chengxin Li; Xiaoli Zhang; Mala Sinha; Bruce A. Luxon; Jingwu Xie

The hedgehog (Hh) signaling pathway is essential for embryonic development and carcinogenesis. Activation of Hh signaling has been identified in several types of gastrointestinal cancers, including esophageal, gastric, pancreatic, and liver cancers. Several recent studies suggest that Hh signaling activation can inhibit Wnt signaling. However, the molecular basis underlying this inhibition remains unclear. As transcription factors in the Hh signaling pathway, Gli molecules transform cells in culture, and their expression are associated with cancer development. Here we report that expression of a secreted frizzled-related protein-sFRP-1 in mouse embryonic fibroblasts is dependent on Gli1 and Gli2. In human gastric cancer cells, inhibition of Hh signaling reduces the level of sFRP-1 transcript, whereas ectopic expression of Gli1 increases the level of sFRP-1 transcript. Results from chromatin immunoprecipitation indicate that Gli1 is involved in transcriptional regulation of sFRP-1. In 293 cells with Gli1 expression, Wnt-1-mediated β-catenin accumulation in the cytosol and DKK1 expression are all abrogated, which can be reversed by inhibiting sFRP-1 expression. Furthermore, while SIIA cells do not respond to Wnt-1-conditioned medium, inhibition of Hh signaling by smoothened (SMO) antagonist KAAD-cyclopamine (keto-N-aminoethylaminocaproyldihydrocinnamoylcyclopamine) leads to Wnt1-mediated β-catenin accumulation in the cytosol. These data indicate that sFRP-1, a target gene of the hedgehog pathway, is involved in cross-talk between the hedgehog pathway and the Wnt pathway.

Collaboration


Dive into the Bruce A. Luxon's collaboration.

Top Co-Authors

Avatar

David G. Gorenstein

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Mala Sinha

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

David E. Volk

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Norbert K. Herzog

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Heidi Spratt

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Xianbin Yang

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Varatharasa Thiviyanathan

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Muniasamy Neerathilingam

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Allan R. Brasier

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Judy Aronson

University of Texas Medical Branch

View shared research outputs
Researchain Logo
Decentralizing Knowledge