Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bruce A. Manny is active.

Publication


Featured researches published by Bruce A. Manny.


Journal of Great Lakes Research | 1996

Recovery of burrowing mayflies (Ephemeroptera: Ephemeridae: Hexagenia) in western Lake Erie

Kenneth A. Krieger; Don W. Schloesser; Bruce A. Manny; Carmen E. Trisler; Susan E. Heady; Jan J.H. Ciborowski; Kenneth M. Muth

Burrowing mayflies (Hexagenia spp.) are native to western Lake Erie and were abundant until the 1950s, when they disappeared due to degraded water and sediment quality. Nymphs were absent from the sediments of most of western Lake Erie after the 1950s, although small, widely disjunct populations apparently persisted near shore. Sediment samples collected in 1993 revealed several small populations near the western and southern shores and beyond the mouths of the Detroit and Maumee rivers. A larger population was found in the southern island area, but nymphs were absent in the middle of the basin. By 1995, nymphs had spread throughout the western half and eastern end of the basin but remained absent from the middle of the basin. These data indicate that Hexagenia began recolonizing nearshore areas before offshore areas. Increasingly large swarms of winged Hexagenia on shore and over the lake between 1992 and 1994 further indicate that mayflies are recolonizing the basin. Factors that have permitted Hexagenia recovery in western Lake Erie probably include improved sediment and water quality attributed to pollution abatement programs implemented after the early 1970s, and perhaps environmental changes in the early 1990s attributed to effects of the exotic zebra mussel (Dreissena polymorpha)


Journal of Great Lakes Research | 1995

Lake Trout Spawning Habitat in the Great Lakes — a Review of Current Knowledge

J. Ellen Marsden; John M. Casselman; Thomas A. Edsall; Robert F. Elliott; John D. Fitzsimons; William H. Horns; Bruce A. Manny; Scott C. McAughey; P.G. Sly; Bruce L. Swanson

Abstract We review existing information on lake trout spawning habitat, which might indicate whether habitat is now a limiting factor in lake trout reproductive success. Lake trout spawning habitat quality is defined by the presence or absence of olfactory cues for homing, reef location with respect to the shoreline, water depth, proximity to nursery areas, reef size, contour, substrate size and shape, depth of interstitial spaces, water temperature at spawning time, water quality in interstitial spaces, and the presence of egg and fry predators. Data on factors which attracted native spawners to spawning reefs are lacking, due to the absence of historic data on egg deposition. No direct evidence of egg deposition has been collected from sites deeper than 18 m. Interstitial space and, therefore, substrate size and shape, appear to be critical for both site selection by adults and protection of eggs and fry. Water quality is clearly important for egg incubation, but the critical parameters which define water quality have not yet been well determined in the field. Exposure to wave energy, dictated in part by reef location, may maintain high water quality but may also damage or dislodge eggs. The importance of olfactory cues, water temperature, and proximity to nursery habitat to spawning trout is unclear. Limited data suggest that egg and fry predators, particularly exotic species, may critically affect fry production and survival. Although availability of physical spawning habitat is probably not limiting lake trout reproduction, changes in water quality and species composition may negatively affect early life stages. This review of habitat factors that affect early life stages of lake trout suggests several priorities for research and management.


Journal of Great Lakes Research | 2007

Evidence of lake whitefish spawning in the Detroit River: Implications for habitat and population recovery

Edward F. Roseman; Gregory W. Kennedy; James C. Boase; Bruce A. Manny; Thomas N. Todd; Wendylee Stott

ABSTRACT Historic reports imply that the lower Detroit River was once a prolific spawning area for lake whitefish (Coregonus clupeaformis) prior to the construction of the Livingstone shipping channel in 1911. Large numbers of lake whitefish migrated into the river in fall where they spawned on expansive limestone bedrock and gravel bars. Lake whitefish were harvested in the river during this time by commercial fisheries and for fish culture operations. The last reported landing of lake whitefish from the Detroit River was in 1925. Loss of suitable spawning habitat during the construction of the shipping channels as well as the effects of over-fishing, sea lamprey (Petromyzon marinus) predation, loss of riparian wetlands, and other perturbations to riverine habitat are associated with the disappearance of lake whitefish spawning runs. Because lake whitefish are recovering in Lake Erie with substantial spawning occurring in the western basin, we suspected they may once again be using the Detroit River to s...


Journal of Great Lakes Research | 1995

Oligochaete Fauna of Western Lake Erie 1961 and 1982: Signs of Sediment Quality Recovery

Don W. Schloesser; Trefor B. Reynoldson; Bruce A. Manny

The oligochaete fauna at 40 stations in western Lake Erie were collected in 1982 and compared to oligochaete fauna collected similarly in 1961. A total of 34 taxa, representing 18 Tubificidae and 16 Naididae, were identified. Changes in the proportions of low, moderate, and heavy polluted sediments, as determined by ranges of total numbers of oligochaetes, indicate that, in general, heavy pollution substantially decreased near shore and moderate pollution increased and low pollution decreased in open waters over the 21-year comparison. The most common taxon, the eutrophic species, Limnodrilus hoffmeisteri, decreased in abundance in open water, indicating decreased eutrophication, whereas the distribution and abundance of other indicator taxa, including the eutrophic species L. maumeensis, L. cervix, Quistadrilus multisetosus multisetosus, and mesotrophic species Ilyodrilus templetoni and three species of Aulodrilus indicate increased eutrophication in open water. In general, oligochaete trophic indices (based on tubificid species and abundances) in traditional area designations used in 1961, the nearshore designation (<3.5 km from shore), and areas defined by cluster analysis confirm results of less eutrophic substrates near shore. However, traditional analysis indicates that low pollution was replaced by moderate pollution in open waters and cluster analysis indicates that the zone of least detectable pollution increased in open waters over the 21-year comparison. It may be that the open waters of western Lake Erie were in a stage of transition between pollution designations when sampled in 1982. The present study is valuable because it provides a baseline to assess environmental changes observed in western Lake Erie after many years of pollution abatement programs and before the exponential increase in densities of the trophic shifting zebra mussel Dreissena polymorpha.


Journal of Great Lakes Research | 2007

First Evidence of Egg Deposition by Walleye (Sander vitreus) in the Detroit River

Bruce A. Manny; Gregory W. Kennedy; Jeffrey D. Allen; John R. P. French

The importance of fish spawning habitat in channels connecting the Great Lakes to fishery productivity in those lakes is poorly understood and has not been adequately documented. The Detroit River is a reputed spawning and nursery area for many fish, including walleye (Sander vitreus) that migrate between adjacent Lakes Erie and St. Clair. During April–May 2004, near the head of the Detroit River, we collected 136 fish eggs from the bottom of the river on egg mats. We incubated the eggs at the Great Lakes Science Center until they hatched. All eleven larvae that hatched from the eggs were identified as walleye. These eggs and larvae are the first credible scientific evidence that walleye spawn in the Detroit River. Their origin might be a stock of river-spawning walleye. Such a stock of walleye could potentially add resilience to production by walleye stocks that spawn and are harvested in adjacent waters.


Journal of Great Lakes Research | 2010

Spawning by walleye (Sander vitreus) and white sucker (Catostomus commersoni) in the Detroit River: implications for spawning habitat enhancement.

Bruce A. Manny; Gregory W. Kennedy; James C. Boase; Jeffrey D. Allen; Edward F. Roseman

ABSTRACT Few active fish spawning grounds have been found in channels connecting the Great Lakes. Here, we describe one near Belle Isle in the Detroit River, part of the channel connecting lakes Huron and Erie. There, in 2005, we collected 1,573 fish eggs, cultured them, and identified the hatched larvae as walleye (Sander vitreus) and white sucker (Catostomus commersoni). Walleye spawning peaked during the week of April 12–19; white sucker spawning peaked on May 10. Average areal rate of egg deposition by walleye and white sucker at this spawning ground in 2005 was 346 and 25 eggs/m2, respectively. Our environmental measurements showed that bottom substrates on this spawning ground were largely sand, not optimal for fish reproduction. We hypothesize that reproduction of these fish at this spawning ground could be enhanced by adding rock and gravel substrates for protection of deposited fish eggs and suggest that reproduction by walleye in the Detroit River may add resilience to production of walleye in western Lake Erie.


Journal of Great Lakes Research | 1995

An Evaluation of Lake Trout Reproductive Habitat on Clay Banks Reef, Northwestern Lake Michigan

Thomas A. Edsall; Bruce A. Manny; Gregory W. Kennedy

Abstract The extinction of the native populations of lake trout (Salvelinus namaycush) in Lake Michigan in about 1956 has been followed by a decades-long attempt to reestablish self-sustaining populations of this valuable species in habitats it formerly occupied throughout the lake. One of the most recent management strategies designed to facilitate recovery was to make a primary management objective the establishment of sanctuaries where stocked lake trout could be protected and self-sustaining populations reestablished. In the present study we employed habitat survey and mapping techniques, field and laboratory bioassays, egg traps, sediment traps, and gill nets to examine the potential for successful natural reproduction by stocked lake trout on Clay Banks Reef in the Door-Kewaunee sanctuary in Wisconsin waters of Lake Michigan. Our study revealed (1) there was suitable habitat on the reef to support the production of viable fry, (2) spawner abundance on the reef was the highest recorded in the Great Lakes, and (3) eggs taken from spawners on the reef and held on the reef in Plexiglas incubators hatched and produced fry that survived through swim-up. We conclude that Clay Banks Reef has the potential to support successful natural reproduction by stocked lake trout.


Journal of Great Lakes Research | 1995

Survival of Lake Trout Eggs on Reputed Spawning Grounds in Lakes Huron and Superior: in situ Incubation, 1987–1988

Bruce A. Manny; Thomas A. Edsall; James W. Peck; Gregory W. Kennedy; Anthony M. Frank

Lake trout reproduce widely in Lake Superior but little in Lake Huron. We examined whether survival of lake trout eggs and fry in either lake was reduced by physical disturbances and swim-up mortality. Eggs were collected from feral lake trout in Lake Superior and placed in 108 plastic incubators. A total of 48 incubators was set at Partridge Island Reef in southern Lake Superior, 48 were set at Port Austin Reef in southern Lake Huron, and 12 were held as controls inflowing well water at a laboratory. Survival-to-hatching of these eggs at Partridge Island Reef (18%) was significantly different from that at Port Austin Reef (43%) and significantly different in the laboratory (88%) from that at either reef (P < 0.05). During egg-fry incubation from 28 October 1987 to 5 May 1988, 11–18 cm of sediment accumulated in sediment traps placed on the reefs but < 1 cm of sediment was present on each reef in May 1988. Analysis showed that 44% of the eggs at Port Austin Reef and 28% of those at Partridge Island Reef were buried and killed by sediments. During the first week after deployment, mean wave energy was 90% higher at Partridge Island Reef and significantly different from that at Port Austin Reef. Wave energy may be a habitat condition that makes Partridge Island Reef less suitable than Port Austin Reef for incubation of lake trout eggs. Fry from eggs incubated at all three sites experienced no swim-up mortality. We conclude that in 1987–88 habitat conditions required for survival of lake trout eggs were more suitable at Port Austin Reef than at Partridge Island Reef.


Journal of Great Lakes Research | 2007

Restoration of Wildcelery, Vallisneria americana Michx., in the Lower Detroit River of the Lake Huron-Lake Erie Corridor

Don W. Schloesser; Bruce A. Manny

ABSTRACT American wildcelery (Vallisneria americana Michx.) is a valuable submersed aquatic plant that was negatively affected by pollution and urban runoff in the lower Detroit River for much of the 20th century. Following 25 years of water-pollution and urban-runoff abatement initiated in the early 1970s, we postulated that water clarity had increased and that this would allow restoration of wildcelery in the lower Detroit River. In addition, water clarity increased in the late 1980s due to water filtration and particulate removal by exotic dreissenid mussels (Dreissena polymorpha and D. bugensis), which could contribute to potential wildcelery restoration. We sampled wildcelery in 1996–97 and compared these data to wildcelery data from 1950–51 and 1984–85. Over the 48-year period of comparison, areal density of wildcelery tubers decreased 72% (from 51.2 million to 14.4 million tubers) between 1950–51 and 1984–85 then increased 251% (from14.4 million to 50.5 million tubers) between 1984–85 and 1996–97. As a result, overall areal abundance was about the same in 1950–51 as in fall 1996–97. However, tuber densities in spring 1996 were similar to historical low abundances in springs of 1984–85. Then between spring and fall 1996, tuber densities increased 333% and remained relatively abundant through October 1997 indicating the beginning of the restoration of wildcelery in the lower Detroit River. In addition, we believe further reductions of turbidity through continued pollution-abatement programs and water filtration by dreissenid mussels combined with habitat protection and active management of wildcelery will contribute even further to the restoration of wildcelery in the Detroit River in the 21st century.


Journal of Great Lakes Research | 2003

Starvation Resistance in Lake Trout Fry

Thomas A. Edsall; Bruce A. Manny; Gregory W. Kennedy

Newly hatched fry were acclimated to 7 or 12°C and either fed daily (controls) or denied food for varying lengths of time and then fed daily until the end of the study (day 91 at 7°C and day 43 at 12°C). Growth was reduced by delays in the onset of feeding of 27 or more days at 7°C and 7 or more days at 12°C. Mortality of fry unfed for more than 34 days at 7°C, or more than 21 days at 12°C, was higher than among controls. Daily mortality increased with the length of the food deprivation period and did not cease immediately when food was made available, but reached zero by the end of the study. Mortality among unfed fry reached 50% in about 59 days at 7°C and 32 days at 12°C. Study results permitted calculation of the “point-of-no-return” (PNR) mortality, which included the mortality that occurred during the period of food deprivation, and also the delayed component of mortality that was directly attributable to starvation and that occurred after food was made available. The PNR for 50% mortality for food-deprived fry occurred after 52 days at 7°C and 24 days at 12°C. Thus, both measures of mortality indicate that lake trout fry would be highly resistant to death by starvation in the thermal habitat they would be expected to occupy in the Great Lakes. We conclude that a more likely adverse effect of reduced food availability would result from a reduction in growth rate that extends the length of time fry remain small and vulnerable to predation by adult alewives and other non-native fishes with which they associate.

Collaboration


Dive into the Bruce A. Manny's collaboration.

Top Co-Authors

Avatar

James C. Boase

United States Fish and Wildlife Service

View shared research outputs
Top Co-Authors

Avatar

Justin A. Chiotti

United States Fish and Wildlife Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Donald W. Schloesser

United States Fish and Wildlife Service

View shared research outputs
Top Co-Authors

Avatar

Michael V. Thomas

Michigan Department of Natural Resources

View shared research outputs
Top Co-Authors

Avatar

Richard Drouin

Ontario Ministry of Natural Resources

View shared research outputs
Top Co-Authors

Avatar

Ashlee N. Horne

United States Fish and Wildlife Service

View shared research outputs
Top Co-Authors

Avatar

Bruce L. Swanson

Wisconsin Department of Natural Resources

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge