Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bruce A. Muggenburg is active.

Publication


Featured researches published by Bruce A. Muggenburg.


Neurobiology of Aging | 2008

Proteomic identification of brain proteins in the canine model of human aging following a long-term treatment with antioxidants and a program of behavioral enrichment: Relevance to Alzheimer's disease

Wycliffe O. Opii; Gururaj Joshi; Elizabeth Head; N. William Milgram; Bruce A. Muggenburg; Jon B. Klein; William M. Pierce; Carl W. Cotman; D. Allan Butterfield

Aging and age-related disorders such as Alzheimers disease (AD) are usually accompanied by oxidative stress as one of the main mechanisms contributing to neurodegeneration and cognitive decline. Aging canines develop cognitive dysfunction and neuropathology similar to those seen in humans, and the use of antioxidants results in reductions in oxidative damage and in improvement in cognitive function in this canine model of human aging. In the present study, the effect of a long-term treatment with an antioxidant-fortified diet and a program of behavioral enrichment on oxidative damage was studied in aged canines. To identify the neurobiological mechanisms underlying these treatment effects, the parietal cortex from 23 beagle dogs (8.1-12.4 years) were treated for 2.8 years in one of four treatment groups: i.e., control food-control behavioral enrichment (CC); control food-behavioral enrichment (CE); antioxidant food-control behavioral enrichment (CA); enriched environment-antioxidant-fortified food (EA). We analyzed the levels of the oxidative stress biomarkers, i.e., protein carbonyls, 3-nitrotyrosine (3-NT), and the lipid peroxidation product, 4-hydroxynonenal (HNE), and observed a decrease in their levels on all treatments when compared to control, with the most significant effects found in the combined treatment, EA. Since EA treatment was most effective, we also carried out a comparative proteomics study to identify specific brain proteins that were differentially expressed and used a parallel redox proteomics approach to identify specific brain proteins that were less oxidized following EA. The specific protein carbonyl levels of glutamate dehydrogenase [NAD (P)], glyceraldehyde-3-phosphate dehydrogenase (GAPDH), alpha-enolase, neurofilament triplet L protein, glutathione-S-transferase (GST) and fascin actin bundling protein were significantly reduced in brain of EA-treated dogs compared to control. We also observed significant increases in expression of Cu/Zn superoxide dismutase, fructose-bisphosphate aldolase C, creatine kinase, glutamate dehydrogenase and glyceraldehyde-3-phosphate dehydrogenase. The increased expression of these proteins and in particular Cu/Zn SOD correlated with improved cognitive function. In addition, there was a significant increase in the enzymatic activities of glutathione-S-transferase (GST) and total superoxide dismutase (SOD), and significant increase in the protein levels of heme oxygenase (HO-1) in EA treated dogs compared to control. These findings suggest that the combined treatment reduces the levels of oxidative damage and improves the antioxidant reserve systems in the aging canine brain, and may contribute to improvements in learning and memory. These observations provide insights into a possible neurobiological mechanism underlying the effects of the combined treatment. These results support the combination treatments as a possible therapeutic approach that could be translated to the aging human population who are at risk for age-related neurodegenerative disorders, including Alzheimers disease.


Journal of Neurochemistry | 2002

Oxidative damage increases with age in a canine model of human brain aging

Elizabeth Head; J. Liu; T. M. Hagen; Bruce A. Muggenburg; Norton W. Milgram; Bruce N. Ames; Carl W. Cotman

We assayed levels of lipid peroxidation, protein carbonyl formation, glutamine synthetase (GS) activity and both oxidized and reduced glutathione to study the link between oxidative damage, aging and β‐amyloid (Aβ) in the canine brain. The aged canine brain, a model of human brain aging, naturally develops extensive diffuse deposits of human‐type Aβ. Aβ was measured in immunostained prefrontal cortex from 19 beagle dogs (4–15 years). Increased malondialdehyde (MDA), which indicates increased lipid peroxidation, was observed in the prefrontal cortex and serum but not in cerebrospinal fluid (CSF). Oxidative damage to proteins (carbonyl formation) also increased in brain. An age‐dependent decline in GS activity, an enzyme vulnerable to oxidative damage, and in the level of glutathione (GSH) was observed in the prefrontal cortex. MDA level in serum correlated with MDA accumulation in the prefrontal cortex. Although 11/19 animals exhibited Aβ, the extent of deposition did not correlate with any of the oxidative damage measures, suggesting that each form of neuropathology accumulates in parallel with age. This evidence of widespread oxidative damage and Aβ deposition is further justification for using the canine model for studying human brain aging and neurodegenerative diseases.


Neurobiology of Aging | 2004

Learning ability in aged beagle dogs is preserved by behavioral enrichment and dietary fortification: a two-year longitudinal study

Norton W. Milgram; Elizabeth Head; Steven C. Zicker; Candace J. Ikeda-Douglas; Heather Murphey; Bruce A. Muggenburg; Christina T. Siwak; Dwight Tapp; Carl W. Cotman

The effectiveness of two interventions, dietary fortification with antioxidants and a program of behavioral enrichment, was assessed in a longitudinal study of cognitive aging in beagle dogs. A baseline protocol of cognitive testing was used to select four cognitively equivalent groups: control food-control experience (C-C), control food-enriched experience (C-E), antioxidant fortified food-control experience (A-C), and antioxidant fortified food-enriched experience(A-E). We also included two groups of young behaviorally enriched dogs, one receiving the control food and the other the fortified food. Discrimination learning and reversal was assessed after one year of treatment with a size discrimination task, and again after two years with a black/white discrimination task. The four aged groups were comparable at baseline. At one and two years, the aged combined treatment group showed more accurate learning than the other aged groups. Discrimination learning was significantly improved by behavioral enrichment. Reversal learning was improved by both behavioral enrichment and dietary fortification. By contrast, the fortified food had no effect on the young dogs. These results suggest that behavioral enrichment or dietary fortification with antioxidants over a long-duration can slow age-dependent cognitive decline, and that the two treatments together are more effective than either alone in older dogs.


Neurobiology of Aging | 1998

Visual-discrimination learning ability and β-amyloid accumulation in the dog

Elizabeth Head; Heather Callahan; Bruce A. Muggenburg; Carl W. Cotman; Norton W. Milgram

Young, middle-aged, and old beagle dogs were tested on several visual-discrimination tasks: reward- and object-approach learning, object discrimination and reversal, long-term retention of a reversal problem, and a size-discrimination task. Beta-amyloid accumulation in the entorhinal, prefrontal, parietal, and occipital cortices was quantified using immunohistochemical and imaging techniques at the conclusion of cognitive testing. Middle-aged and old dogs were impaired in size-discrimination learning. In each task, a subset of aged dogs was impaired relative to age-matched peers. Beta-amyloid accumulation was age-dependent. However, not all middle-aged and old dogs showed beta-amyloid accumulation in the entorhinal cortex. The error scores from dogs tested with a nonpreferred object during visual discrimination learning and from reversal learning were correlated with beta-amyloid in the prefrontal but not entorhinal cortex. Size-discrimination and reward and object-approach learning error scores were correlated with beta-amyloid accumulation in the entorhinal but not prefrontal cortex. The results of these studies support an association between cognitive test and the location and extent of beta-amyloid pathology.


Neuroscience & Biobehavioral Reviews | 2002

Landmark discrimination learning in the dog: effects of age, an antioxidant fortified food, and cognitive strategy

Norton W. Milgram; Elizabeth Head; Bruce A. Muggenburg; D. Holowachuk; H. Murphey; Jimena Estrada; Candace J. Ikeda-Douglas; Steven C. Zicker; Carl W. Cotman

The landmark discrimination learning test can be used to assess the ability to utilize allocentric spatial information to locate targets. The present experiments examined the role of various factors on performance of a landmark discrimination learning task in beagle dogs. Experiments 1 and 2 looked at the effects of age and food composition. Experiments 3 and 4 were aimed at characterizing the cognitive strategies used in performance on this task and in long-term retention. Cognitively equivalent groups of old and young dogs were placed into either a test group maintained on food enriched with a broad-spectrum of antioxidants and mitochondrial cofactors, or a control group maintained on a complete and balanced food formulated for adult dogs. Following a wash-in period, the dogs were tested on a series of problems, in which reward was obtained when the animal responded selectively to the object closest to a thin wooden block, which served as a landmark. In Experiment 1, dogs were first trained to respond to a landmark placed directly on top of coaster, landmark 0 (L0). In the next phase of testing, the landmark was moved at successively greater distances (1, 4 or 10 cm) away from the reward object. Learning varied as a function of age group, food group, and task. The young dogs learned all of the tasks more quickly than the old dogs. The aged dogs on the enriched food learned L0 significantly more rapidly than aged dogs on control food. A higher proportion of dogs on the enriched food learned the task, when the distance was increased to 1cm. Experiment 2 showed that accuracy decreased with increased distance between the reward object and landmark, and this effect was greater in old animals. Experiment 3 showed stability of performance, despite using a novel landmark, and new locations, indicating that dogs learned the landmark concept. Experiment 4 found age impaired long-term retention of the landmark task. These results indicate that allocentric spatial learning is impaired in an age-dependent manner in dogs, and that age also affects performance when the distance between the landmark and target is increased. In addition, these results both support a role of oxidative damage in the development of age-associated cognitive dysfunction and indicate that short-term administration of a food enriched with supplemental antioxidants and mitochondrial cofactors can partially reverse the deleterious effects of aging on cognition.


Neurobiology of Aging | 2002

Dietary enrichment counteracts age-associated cognitive dysfunction in canines

Norton W. Milgram; Steven C. Zicker; Elizabeth Head; Bruce A. Muggenburg; Heather Murphey; Candace J. Ikeda-Douglas; Carl W. Cotman

Advanced age is accompanied by cognitive decline indicative of central nervous system dysfunction. One possibly critical causal factor is oxidative stress. Accordingly, we studied the effects of dietary antioxidants and age in a canine model of aging that parallels the key features of cognitive decline and neuropathology in humans. Old and young animals were placed on either a standard control food, or a food enriched with a broad spectrum of antioxidants and mitochondrial enzymatic cofactors. After 6 months of treatment, the animals were tested on four increasingly difficult oddity discrimination learning problems. The old animals learned more slowly than the young, making significantly more errors. However, this age-associated decline was reduced in the animals fed the enriched food, particularly on the more difficult tasks. These results indicate that maintenance on foods fortified with complex mixtures of antioxidants can partially counteract the deleterious effects of aging on cognition.


Neurobiology of Aging | 2002

Brain aging in the canine: a diet enriched in antioxidants reduces cognitive dysfunction

Carl W. Cotman; Elizabeth Head; Bruce A. Muggenburg; Steven C. Zicker; Norton W. Milgram

Animal models that simulate various aspects of human brain aging are an essential step in the development of interventions to manage cognitive dysfunction in the elderly. Over the past several years we have been studying cognition and neuropathology in the aged-canine (dog). Like humans, canines naturally accumulate deposits of beta-amyloid (Abeta) in the brain with age. Further, canines and humans share the same Abeta sequence and also first show deposits of the longer Abeta1-42 species followed by the deposition of Abeta1-40. Aged canines like humans also show increased oxidative damage. As a function of age, canines show impaired learning and memory on tasks similar to those used in aged primates and humans. The extent of Abeta deposition correlates with the severity of cognitive dysfunction in canines. To test the hypothesis that a cascade of mechanisms centered on oxidative damage and Abeta results in cognitive dysfunction we have evaluated the cognitive effects of an antioxidant diet in aged canines. The diet resulted in a significant improvement in the ability of aged but not young animals to acquire progressively more difficult learning tasks (e.g. oddity discrimination learning). The canine represent a higher animal model to study the earliest declines in the cognitive continuum that includes age associated memory impairments (AAMI) and mild cognitive impairment (MCI) observed in human aging. Thus, studies in the canine model suggest that oxidative damage impairs cognitive function and that antioxidant treatment can result in significant improvements, supporting the need for further human studies.


Photochemistry and Photobiology | 2000

Pharmacokinetics of ICG and HPPH-car for the Detection of Normal and Tumor Tissue Using Fluorescence, Near-infrared Reflectance Imaging: A Case Study¶

Michael Gurfinkel; Alan B. Thompson; William Ralston; Tamara L. Troy; Ana L. Moore; Thomas A. Moore; J. Devens Gust; Derreck Tatman; Jeffery S. Reynolds; Bruce A. Muggenburg; Kristin Nikula; Ravindra K. Pandey; Ralf H. Mayer; Daniel J. Hawrysz; Eva M. Sevick-Muraca

Abstract We present in vivo fluorescent, near-infrared (NIR), reflectance images of indocyanine green (ICG) and carotene-conjugated 2-devinyl-2-(1-hexyloxyethyl) pyropheophorbide (HPPH-car) to discriminate spontaneous canine adenocarcinoma from normal mammary tissue. Following intravenous administration of 1.0 mg kg−1 ICG or 0.3 mg kg−1 HPPH-car into the canine, a 25 mW, 778 nm or 70 mW, 660 nm laser diode beam, expanded by a diverging lens to approximately 4 cm in diameter, illuminated the surface of the mammary tissue. Successfully propagating to the tissue surface, ICG or HPPH-car fluorescence generated from within the tissue was collected by an image-intensified, charge-coupled device camera fitted with an 830 or 710 nm bandpass interference filter. Upon collecting time-dependent fluorescence images at the tissue surface overlying both normal and diseased tissue volumes, and fitting these images to a pharmacokinetic model describing the uptake (wash-in) and release (wash-out) of fluorescent dye, the pharmacokinetics of fluorescent dye was spatially determined. Mapping the fluorescence intensity owing to ICG indicates that the dye acts as a blood pool or blood persistent agent, for the model parameters show no difference in the ICG uptake rates between normal and diseased tissue regions. The wash-out of ICG was delayed for up to 72 h after intravenous injection in tissue volumes associated with disease, because ICG fluorescence was still detected in the diseased tissue 72 h after injection. In contrast, HPPH-car pharmacokinetics illustrated active uptake into diseased tissues, perhaps owing to the overexpression of LDL receptors associated with the malignant cells. HPPH-car fluorescence was not discernable after 24 h. This work illustrates the ability to monitor the pharmacokinetic delivery of NIR fluorescent dyes within tissue volumes as great as 0.5–1 cm from the tissue surface in order to differentiate normal from diseased tissue volumes on the basis of parameters obtained from the pharmacokinetic models.


The Journal of Neuroscience | 2004

Frontal Lobe Volume, Function, and β-Amyloid Pathology in a Canine Model of Aging

P. Dwight Tapp; Christina T. Siwak; Fu Qiang Gao; Jr-Yuan Chiou; Sandra E. Black; Elizabeth Head; Bruce A. Muggenburg; Carl W. Cotman; Norton W. Milgram; Min-Ying Su

Application of magnetic resonance imaging (MRI) techniques reveals that human brain aging varies across cortical regions. One area particularly sensitive to normal aging is the frontal lobes. In vitro neuropathological studies and behavioral measures in a canine model of aging previously suggested that the frontal lobes of the dog might be sensitive to aging. In the present study, MRI scans were acquired to compare age-related changes in frontal lobe volume with changes in executive functions andβ-amyloid pathology in the frontal cortex of beagle dogs aged 3 months to 15 years. Decreases in total brain volume appeared only in senior dogs (aged 12 years and older), whereas frontal lobe atrophy developed earlier, appearing in the old dogs (aged 8-11 years). Hippocampal volume also declined with age, but not occipital lobe volume past maturity. Reduced frontal lobe volume correlated with impaired performance on measures of executive function, including inhibitory control and complex working memory, and with increased β-amyloid accumulation in the frontal cortex. Age-related hippocampal atrophy also correlated with complex working memory but not inhibitory control, whereas occipital lobe volume did not correlate with any cognitive measure. These findings are consistent with the frontal lobe theory of aging in humans, which suggests that the frontal lobes and functions subserved by this region are compromised early in aging.


Neurobiology of Learning and Memory | 2007

Neurogenesis decreases with age in the canine hippocampus and correlates with cognitive function

Christina Siwak-Tapp; Elizabeth Head; Bruce A. Muggenburg; Norton W. Milgram; Carl W. Cotman

New neurons are continually produced in the adult mammalian brain from progenitor cells located in specific brain regions, including the subgranular zone (SGZ) of the dentate gyrus of the hippocampus. We hypothesized that neurogenesis occurs in the canine brain and is reduced with age. We examined neurogenesis in the hippocampus of five young and five aged animals using doublecortin (DCX) and bromodeoxyuridine (BrdU) immunostaining. The total unilateral number of new neurons in the canine SGZ and granule cell layer (GCL) was estimated using stereological techniques based upon unbiased principles of systematic uniformly random sampling. Animals received 25mg/kg of BrdU once a day for 5 days and were euthanized 9 days after the last injection. We found evidence of neurogenesis in the canine brain and that cell genesis and neurogenesis are greatly reduced in the SGZ/GCL of aged animals compared to young. We further tested the hypothesis that an antioxidant fortified food or behavioral enrichment would improve neurogenesis in the aged canine brain and neurogenesis may correlate with cognitive function. Aged animals were treated for 2.8 years and tissue was available for six that received the antioxidant food, five that received the enrichment and six receiving both treatments. There were no significant differences in the absolute number of DCX or DCX-BrdU neurons or BrdU nuclei between the treatment groups compared to control animals. The number of DCX-positive neurons and double-labeled DCX-BrdU-positive neurons, but not BrdU-positive nuclei alone, significantly correlated with performance on several cognitive tasks including spatial memory and discrimination learning. These results suggest that new neurons in the aged canine dentate gyrus may participate in modulating cognitive functions.

Collaboration


Dive into the Bruce A. Muggenburg's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carl W. Cotman

University of California

View shared research outputs
Top Co-Authors

Avatar

Bruce B. Boecker

United States Department of Energy

View shared research outputs
Top Co-Authors

Avatar

Joe L. Mauderly

Lovelace Respiratory Research Institute

View shared research outputs
Top Co-Authors

Avatar

Raymond A. Guilmette

Lovelace Respiratory Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Heather Murphey

Lovelace Respiratory Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge