Bruce A. Roe
University of Oklahoma
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bruce A. Roe.
Nature | 2009
Peter J. Turnbaugh; Micah Hamady; Tanya Yatsunenko; Brandi L. Cantarel; Alexis E. Duncan; Ruth E. Ley; Mitchell L. Sogin; William J. Jones; Bruce A. Roe; Jason Affourtit; Michael Egholm; Bernard Henrissat; Andrew C. Heath; Rob Knight; Jeffrey I. Gordon
The human distal gut harbours a vast ensemble of microbes (the microbiota) that provide important metabolic capabilities, including the ability to extract energy from otherwise indigestible dietary polysaccharides. Studies of a few unrelated, healthy adults have revealed substantial diversity in their gut communities, as measured by sequencing 16S rRNA genes, yet how this diversity relates to function and to the rest of the genes in the collective genomes of the microbiota (the gut microbiome) remains obscure. Studies of lean and obese mice suggest that the gut microbiota affects energy balance by influencing the efficiency of calorie harvest from the diet, and how this harvested energy is used and stored. Here we characterize the faecal microbial communities of adult female monozygotic and dizygotic twin pairs concordant for leanness or obesity, and their mothers, to address how host genotype, environmental exposure and host adiposity influence the gut microbiome. Analysis of 154 individuals yielded 9,920 near full-length and 1,937,461 partial bacterial 16S rRNA sequences, plus 2.14 gigabases from their microbiomes. The results reveal that the human gut microbiome is shared among family members, but that each person’s gut microbial community varies in the specific bacterial lineages present, with a comparable degree of co-variation between adult monozygotic and dizygotic twin pairs. However, there was a wide array of shared microbial genes among sampled individuals, comprising an extensive, identifiable ‘core microbiome’ at the gene, rather than at the organismal lineage, level. Obesity is associated with phylum-level changes in the microbiota, reduced bacterial diversity and altered representation of bacterial genes and metabolic pathways. These results demonstrate that a diversity of organismal assemblages can nonetheless yield a core microbiome at a functional level, and that deviations from this core are associated with different physiological states (obese compared with lean).
Journal of Molecular Biology | 1980
F. Sanger; Alan Coulson; Bart Barrell; A.J.H. Smith; Bruce A. Roe
Abstract An approach to DNA sequencing using chain-terminating inhibitors (Sanger et al., 1977) combined with cloning of small fragments of DNA in a single-stranded DNA bacteriophage is described. Random fragments from restriction enzyme digestion of the DNA are inserted into the EcoRI site of the modified bacteriophage M13mp2 (Gronenborn & Messing, 1978) using a linker oligonucleotide. Individual recombinant plaques are collected, 1-ml cultures grown, and the DNA isolated. A “flankingprimer” from the vector is used to determine a nucleotide sequence in each inserted DNA fragment by the chain-terminating method. This is a relatively rapid and simple method of accumulating sequence data. The 2771-nucleotide sequence of the largest MboI restriction enzyme fragment from human mitochondrial DNA was determined by this method.
Proceedings of the National Academy of Sciences of the United States of America | 2001
Joseph J. Ferretti; William M. McShan; Dragana Ajdic; Dragutin J. Savic; Gorana Savić; Kevin Lyon; Charles Primeaux; S. Sezate; Alexander N. Suvorov; Steve Kenton; Hong Shing Lai; Shao Ping Lin; Yudong Qian; Hong Gui Jia; Fares Z. Najar; Qun Ren; Hua Zhu; Lin Song; James R. White; Xiling Yuan; Sandra W. Clifton; Bruce A. Roe; Robert McLaughlin
The 1,852,442-bp sequence of an M1 strain of Streptococcus pyogenes, a Gram-positive pathogen, has been determined and contains 1,752 predicted protein-encoding genes. Approximately one-third of these genes have no identifiable function, with the remainder falling into previously characterized categories of known microbial function. Consistent with the observation that S. pyogenes is responsible for a wider variety of human disease than any other bacterial species, more than 40 putative virulence-associated genes have been identified. Additional genes have been identified that encode proteins likely associated with microbial “molecular mimicry” of host characteristics and involved in rheumatic fever or acute glomerulonephritis. The complete or partial sequence of four different bacteriophage genomes is also present, with each containing genes for one or more previously undiscovered superantigen-like proteins. These prophage-associated genes encode at least six potential virulence factors, emphasizing the importance of bacteriophages in horizontal gene transfer and a possible mechanism for generating new strains with increased pathogenic potential.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Dragana Ajdic; William M. McShan; Robert McLaughlin; Gorana Savić; Jin Chang; Matthew B. Carson; Charles Primeaux; Runying Tian; Steve Kenton; Honggui Jia; Shaoping Lin; Yudong Qian; Shuling Li; Hua Zhu; Fares Z. Najar; Hongshing Lai; James R. White; Bruce A. Roe; Joseph J. Ferretti
Streptococcus mutans is the leading cause of dental caries (tooth decay) worldwide and is considered to be the most cariogenic of all of the oral streptococci. The genome of S. mutans UA159, a serotype c strain, has been completely sequenced and is composed of 2,030,936 base pairs. It contains 1,963 ORFs, 63% of which have been assigned putative functions. The genome analysis provides further insight into how S. mutans has adapted to surviving the oral environment through resource acquisition, defense against host factors, and use of gene products that maintain its niche against microbial competitors. S. mutans metabolizes a wide variety of carbohydrates via nonoxidative pathways, and all of these pathways have been identified, along with the associated transport systems whose genes account for almost 15% of the genome. Virulence genes associated with extracellular adherent glucan production, adhesins, acid tolerance, proteases, and putative hemolysins have been identified. Strain UA159 is naturally competent and contains all of the genes essential for competence and quorum sensing. Mobile genetic elements in the form of IS elements and transposons are prominent in the genome and include a previously uncharacterized conjugative transposon and a composite transposon containing genes for the synthesis of antibiotics of the gramicidin/bacitracin family; however, no bacteriophage genomes are present.
Molecular Microbiology | 2002
Natalia S. Akopyants; Sandra W. Clifton; Dangeruta Kersulyte; Jean E. Crabtree; Bryan E. Youree; C.Adonis Reece; Nick O. Bukanov; E. Susan Drazek; Bruce A. Roe; Douglas E. Berg
Most strains of Helicobacter pylori from patients with peptic ulcer disease or intestinal‐type gastric cancer carry cagA, a gene that encodes an immunodominant protein of unknown function, whereas many of the strains from asymptomatically infected persons lack this gene. Recent studies showed that the cagA gene lies near the right end of a ≈37 kb DNA segment (a pathogenicity island, or PAI) that is unique to cagA+ strains and that the cag PAI was split in half by a transposable element insertion in the reference strain NCTC11638. In complementary experiments reported here, we also found the same cag PAI, and sequenced a 39 kb cosmid clone containing the left ‘cagII’ half of this PAI. Encoded in cagII were four proteins each with homology to four components of multiprotein complexes of Bordetella pertussis (‘Ptl’), Agrobacterium tumefaciens (‘Vir’), and conjugative plasmids (‘Tra’) that help deliver pertussis toxin and T (tumour inducing) and plasmid DNA, respectively, to target eukaryotic or prokaryotic cells, and also homologues of eukaryotic proteins that are involved in cytoskeletal structure. To the left of cagII in this cosmid were genes for homologues of HslU (heat‐shock protein) and Era (essential GTPase); to the right of cagII were homologues of genes for a type I restriction endonuclease and ion transport functions. Deletion of the cag PAI had no effect on synthesis of the vacuolating cytotoxin, but this deletion and several cag insertion mutations blocked induction of synthesis of proinflammatory cytokine IL‐8 in gastric epithelial cells. Comparisons among H. pylori strains indicated that cag PAI gene content and arrangement are rather well conserved. We also identified two genome rearrangements with end‐points in the cag PAI. One, in reference strain NCTC11638, involved IS605, a recently described transposable element (as also found by others). Another rearrangement, in 3 of 10 strains tested (including type strain NCTC11637), separated the normally adjacent cagA and picA genes and did not involve IS605. Our results are discussed in terms of how cag‐encoded proteins might help trigger the damaging inflammatory responses in the gastric epithelium and possible contributions of DNA rearrangements to genome evolution.
Nature Genetics | 2003
Wei Li; Qing Zhang; Naoki Oiso; Edward K. Novak; Rashi Gautam; Edward P. O'Brien; Caroline L. Tinsley; Derek J. Blake; Richard A. Spritz; Neal G. Copeland; Nancy A. Jenkins; Dominick Amato; Bruce A. Roe; Marta Starcevic; Esteban C. Dell'Angelica; Rosemary W. Elliott; Vishnu S. Mishra; Stephen F. Kingsmore; Richard Paylor; Richard T. Swank
Hermansky-Pudlak syndrome (HPS; MIM 203300) is a genetically heterogeneous disorder characterized by oculocutaneous albinism, prolonged bleeding and pulmonary fibrosis due to abnormal vesicle trafficking to lysosomes and related organelles, such as melanosomes and platelet dense granules. In mice, at least 16 loci are associated with HPS, including sandy (sdy; ref. 7). Here we show that the sdy mutant mouse expresses no dysbindin protein owing to a deletion in the gene Dtnbp1 (encoding dysbindin) and that mutation of the human ortholog DTNBP1 causes a novel form of HPS called HPS-7. Dysbindin is a ubiquitously expressed protein that binds to α- and β-dystrobrevins, components of the dystrophin-associated protein complex (DPC) in both muscle and nonmuscle cells. We also show that dysbindin is a component of the biogenesis of lysosome-related organelles complex 1 (BLOC-1; refs. 9–11), which regulates trafficking to lysosome-related organelles and includes the proteins pallidin, muted and cappuccino, which are associated with HPS in mice. These findings show that BLOC-1 is important in producing the HPS phenotype in humans, indicate that dysbindin has a role in the biogenesis of lysosome-related organelles and identify unexpected interactions between components of DPC and BLOC-1.
Nature | 2005
Xiao He; Xi He; Vibhuti P. Dave; Yi Zhang; Xiang Hua; Emmanuelle Nicolas; Weihong Xu; Bruce A. Roe; Dietmar J. Kappes
Development of immature T-cell precursors (thymocytes) to either the CD4 helper or CD8 killer T-cell lineages correlates precisely with their T-cell receptor specificity for major histocompatibility complex class II or class I molecules, respectively, indicating that the process is carefully regulated. Although intensively studied owing to its importance in determining the composition of the mature T-cell compartment and as a general model of binary lineage decisions, the underlying molecular pathways remain obscure. We have previously reported a spontaneous mouse mutant (HD (helper deficient) mice) in which lineage commitment is specifically perturbed without affecting positive selection. Here we show that a point mutation in the zinc finger transcription factor Th-POK (T-helper-inducing POZ/Krüppel-like factor) is responsible for redirection of class-II-restricted thymocytes to the CD8 lineage in HD mice. Furthermore, we demonstrate that constitutive expression of this factor during thymic development leads to redirection of class-I-restricted thymocytes to the CD4 lineage, indicating that Th-POK is a master regulator of lineage commitment.
Genetics | 2004
Hong Kyu Choi; Dong-Jin Kim; Taesik Uhm; Eric Limpens; Hyunju Lim; Jeong Hwan Mun; Péter Kaló; R. Varma Penmetsa; Andrea Seres; Olga Kulikova; Bruce A. Roe; Ton Bisseling; György B. Kiss; Douglas R. Cook
A core genetic map of the legume Medicago truncatula has been established by analyzing the segregation of 288 sequence-characterized genetic markers in an F2 population composed of 93 individuals. These molecular markers correspond to 141 ESTs, 80 BAC end sequence tags, and 67 resistance gene analogs, covering 513 cM. In the case of EST-based markers we used an intron-targeted marker strategy with primers designed to anneal in conserved exon regions and to amplify across intron regions. Polymorphisms were significantly more frequent in intron vs. exon regions, thus providing an efficient mechanism to map transcribed genes. Genetic and cytogenetic analysis produced eight well-resolved linkage groups, which have been previously correlated with eight chromosomes by means of FISH with mapped BAC clones. We anticipated that mapping of conserved coding regions would have utility for comparative mapping among legumes; thus 60 of the EST-based primer pairs were designed to amplify orthologous sequences across a range of legume species. As an initial test of this strategy, we used primers designed against M. truncatula exon sequences to rapidly map genes in M. sativa. The resulting comparative map, which includes 68 bridging markers, indicates that the two Medicago genomes are highly similar and establishes the basis for a Medicago composite map.
Applied and Environmental Microbiology | 2010
Samodha C. Fernando; H. T. Purvis Ii; Fares Z. Najar; L. O. Sukharnikov; C. R. Krehbiel; T. G. Nagaraja; Bruce A. Roe; Udaya DeSilva
ABSTRACT High-grain adaptation programs are widely used with feedlot cattle to balance enhanced growth performance against the risk of acidosis. This adaptation to a high-grain diet from a high-forage diet is known to change the rumen microbial population structure and help establish a stable microbial population within the rumen. Therefore, to evaluate bacterial population dynamics during adaptation to a high-grain diet, 4 ruminally cannulated beef steers were adapted to a high-grain diet using a step-up diet regimen containing grain and hay at ratios of 20:80, 40:60, 60:40, and 80:20. The rumen bacterial populations were evaluated at each stage of the step-up diet after 1 week of adaptation, before the steers were transitioned to the next stage of the diet, using terminal restriction fragment length polymorphism (T-RFLP) analysis, 16S rRNA gene libraries, and quantitative real-time PCR. The T-RFLP analysis displayed a shift in the rumen microbial population structure during the final two stages of the step-up diet. The 16S rRNA gene libraries demonstrated two distinct rumen microbial populations in hay-fed and high-grain-fed animals and detected only 24 common operational taxonomic units out of 398 and 315, respectively. The 16S rRNA gene libraries of hay-fed animals contained a significantly higher number of bacteria belonging to the phylum Fibrobacteres, whereas the 16S rRNA gene libraries of grain-fed animals contained a significantly higher number of bacteria belonging to the phylum Bacteroidetes. Real-time PCR analysis detected significant fold increases in the Megasphaera elsdenii, Streptococcus bovis, Selenomonas ruminantium, and Prevotella bryantii populations during adaptation to the high-concentrate (high-grain) diet, whereas the Butyrivibrio fibrisolvens and Fibrobacter succinogenes populations gradually decreased as the animals were adapted to the high-concentrate diet. This study evaluates the rumen microbial population using several molecular approaches and presents a broader picture of the rumen microbial population structure during adaptation to a high-grain diet from a forage diet.
Proceedings of the National Academy of Sciences of the United States of America | 2006
Steven B. Cannon; Lieven Sterck; Stephane Rombauts; Shusei Sato; Foo Cheung; Jérôme Gouzy; Xiaohong Wang; Joann Mudge; Jayprakash Vasdewani; Thomas Schiex; Manuel Spannagl; Erin Monaghan; Christine Nicholson; Sean Humphray; Heiko Schoof; Klaus F. X. Mayer; Jane Rogers; Francis Quetier; Giles E. D. Oldroyd; Frédéric Debellé; Douglas R. Cook; Ernest F. Retzel; Bruce A. Roe; Christopher D. Town; Satoshi Tabata; Yves Van de Peer; Nevin D. Young
Genome sequencing of the model legumes, Medicago truncatula and Lotus japonicus, provides an opportunity for large-scale sequence-based comparison of two genomes in the same plant family. Here we report synteny comparisons between these species, including details about chromosome relationships, large-scale synteny blocks, microsynteny within blocks, and genome regions lacking clear correspondence. The Lotus and Medicago genomes share a minimum of 10 large-scale synteny blocks, each with substantial collinearity and frequently extending the length of whole chromosome arms. The proportion of genes syntenic and collinear within each synteny block is relatively homogeneous. Medicago–Lotus comparisons also indicate similar and largely homogeneous gene densities, although gene-containing regions in Mt occupy 20–30% more space than Lj counterparts, primarily because of larger numbers of Mt retrotransposons. Because the interpretation of genome comparisons is complicated by large-scale genome duplications, we describe synteny, synonymous substitutions and phylogenetic analyses to identify and date a probable whole-genome duplication event. There is no direct evidence for any recent large-scale genome duplication in either Medicago or Lotus but instead a duplication predating speciation. Phylogenetic comparisons place this duplication within the Rosid I clade, clearly after the split between legumes and Salicaceae (poplar).