Bruce A. Stein
National Wildlife Federation
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bruce A. Stein.
Trends in Ecology and Evolution | 2003
John F. Lamoreux; H. Resit Akçakaya; Leon Bennun; Nigel J. Collar; Luigi Boitani; David Brackett; Amie Bräutigam; Thomas M. Brooks; Gustavo A. B. da Fonseca; Russell A. Mittermeier; Anthony B. Rylands; Ulf Gärdenfors; Craig Hilton-Taylor; Georgina M. Mace; Bruce A. Stein; Simon N. Stuart
1 Royama, T. (1992) Analytical Population Dynamics, Chapman & Hall2 Johst, K. and Wissel, C. (1997) Extinction risk in a temporallycorrelated environment. Theor. Popul. Biol. 52, 91–1003 McCarthy, M. and Lindenmayer, D.B. (2000) Spatially correlatedextinction in a metapopulation model of Leadbeater’s Possum. Biodiv.Conserv. 9, 47–634 Engen, S. et al. (2002) Migration and spatiotemporal variation inpopulation dynamics in a heterogeneous environment. Ecology 83,570–5795 Engen, S. et al. (2002) The spatial scale of population fluctuation andquasi-extinction risk. Am. Nat. 160, 439–4516 Gonzalez, A. and Holt, R.D. (2002) The inflationary effects ofenvironmental fluctuations in source–sink systems. Proc. Natl.Acad. Sci. U. S. A. 99, 14872–148777 Pulliam, H.R. (1988) Sources, sinks, and population regulation. Am.Nat. 132, 652–6618 Dias, P.C. (1996) Sources and sinks in population biology. Trends Ecol.Evol. 11, 326–3309 Faaborg, J. et al. (1998) Understanding fragmented midwestern land-scapes: the future. In Avian Conservation: Research and Management(Marzluff, J.M. and Sallabanks, R., eds) pp. 193–207, Island Press10 Murphy, M.T. (2001) Source-sink dynamics of a declining EasternKingbird population and the value of sink habitats. Conserv. Biol. 15,737–74811 Holt, R.D. et al. Impacts of environmental variability in openpopulations and communities: inflation in sink environments. Theor.Popul. Biol. (in press)12 Pulliam, H.R. and Danielson, B.J. (1991) Sources, sinks and habitatselection: a landscape perspective on population dynamics. Am. Nat.137, S50–S6613 Baillie, S.R. et al. (2000) Consequences of large-scale processes for theconservation of bird populations. J. Appl. Ecol. 37, 88–10214 Gundersen, G. et al. (2001) Source-sink dynamics: how sinks affectdemography of sources. Ecol. Lett. 4, 14–2115 Harrison, S. et al. (1988) Distribution of the bay checkerspot butterfly,Euphydryas editha bayensis: evidence for a metapopulations model.Am. Nat. 132, 360–38216 Stacey, P.B. and Taper, M. (1992) Environmental variation and thepersistence of small populations. Ecol. Appl. 2, 18–2917 Wootton, J.T. and Bell, D.A. (1992) A metapopulation model of theperegrine falcon in California: viability and management strategies.Ecol. Appl. 2, 307–32118 Harrison, S. (1991) Local extinction in a metapopulation context: anempirical evaluation. In Metapopulation dynamics: Empirical andTheoreticalInvestigations(Gilpin,M.E.andHanski,I.,eds)pp.73–88,Academic Press19 Thomas, C.D. and Kunin, W.E. (1999) The spatial structure ofpopulations. J. Anim. Ecol. 68, 647–65720 Paradis, E. et al. (1999) Dispersal and spatial scale affect synchrony inspatial population dynamics. Ecol. Lett. 2, 114–12021 Stacey, P.B. et al. (1997) Migration within metapopulations: theimpacts upon local population dynamics. In Metapopulation Biology:Ecology, Genetics, and Evolution (Hanski, I. and Gilpin, M.E., eds)pp. 267–291, Academic Press22 Schiegg, K. et al. (2002) The consequences of disrupted dispersal infragmented red-cockaded woodpecker populations. J. Anim. Ecol. 71,710–72123 Matthysen, E. et al. (2001) Local recruitment of great and blue tits(Parus major, P. caeruleus) in relation to study plot size and degree ofisolation. Ecography 24, 33–4224 Hudson, P.J. and Cattadori, I.M. (1999) The Moran effect: a cause ofpopulation synchrony. Trends Ecol. Evol. 14, 1–225 Earn, D.J.D. et al. (1998) Persistence, chaos and synchrony in ecologyand epidemiology. Proc. R. Soc. Lond. Ser. B 265, 7–10
BioScience | 2011
Erica Fleishman; David E. Blockstein; John A. Hall; Michael B. Mascia; Murray A. Rudd; J. Michael Scott; William J. Sutherland; Ann M. Bartuska; A. Gordon Brown; Catherine A. Christen; Joel P. Clement; Dominick A. DellaSala; Clifford S. Duke; Marietta Eaton; Shirley J. Fiske; Hannah Gosnell; J. Christopher Haney; Michael Hutchins; Mary L. Klein; Jeffrey Marqusee; Barry R. Noon; John R. Nordgren; Paul M. Orbuch; Jimmie Powell; Steven P. Quarles; Kathryn A. Saterson; Charles C. Savitt; Bruce A. Stein; Michael S. Webster; Amy Vedder
To maximize the utility of research to decisionmaking, especially given limited financial resources, scientists must set priorities for their efforts. We present a list of the top 40 high-priority, multidisciplinary research questions directed toward informing some of the most important current and future decisions about management of species, communities, and ecological processes in the United States. The questions were generated by an open, inclusive process that included personal interviews with decisionmakers, broad solicitation of research needs from scientists and policymakers, and an intensive workshop that included scientifically oriented individuals responsible for managing and developing policy related to natural resources. The process differed from previous efforts to set priorities for conservation research in its focus on the engagement of decisionmakers in addition to researchers. The research priorities emphasized the importance of addressing societal context and exploration of trade-offs among alternative policies and actions, as well as more traditional questions related to ecological processes and functions.
Frontiers in Ecology and the Environment | 2013
Bruce A. Stein; Amanda Staudt; Molly S. Cross; Natalie S Dubois; Carolyn A. F. Enquist; Roger B. Griffis; Lara Hansen; Jessica J. Hellmann; Joshua J. Lawler; Erik Nelson; Amber Pairis
The emerging field of climate-change adaptation has experienced a dramatic increase in attention as the impacts of climate change on biodiversity and ecosystems have become more evident. Preparing for and addressing these changes are now prominent themes in conservation and natural resource policy and practice. Adaptation increasingly is viewed as a way of managing change, rather than just maintaining existing conditions. There is also increasing recognition of the need not only to adjust management strategies in light of climate shifts, but to reassess and, as needed, modify underlying conservation goals. Major advances in the development of climate-adaptation principles, strategies, and planning processes have occurred over the past few years, although implementation of adaptation plans continues to lag. With ecosystems expected to undergo continuing climate-mediated changes for years to come, adaptation can best be thought of as an ongoing process, rather than as a fixed endpoint.
BioScience | 2008
Bruce A. Stein; Cameron Scott; Nancy Benton
ABSTRACT The US government has multiple responsibilities for the protection of endangered species, many of them stemming from its role as the nations largest landowner. To explore how endangered and imperiled species are distributed across the federal estate, we carried out a geographic information system (GIS)-based analysis using natural heritage species occurrence data. In this 10-year update of a previous analysis, we found that the Department of Defense and the USDA Forest Service harbor more species with formal status under the Endangered Species Act (ESA) than other US agencies. The densities of ESA status species and imperiled species are at least three times higher on military lands—2.92 and 3.77, respectively, per 100,000 hectares—than on any other agencys lands. Defense installations in Hawaii are especially significant; more than one-third of all ESA status species on military lands are Hawaiian. These findings highlight the continued importance of public lands for the survival of Americas plant and animal species.
BMC Ecology | 2012
Jennifer J. Swenson; Bruce E. Young; Stephan G. Beck; Pat J. Comer; Jesús H. Córdova; Jessica Dyson; Dirk Embert; Filomeno Encarnación; Wanderley Ferreira; Irma Franke; Dennis H. Grossman; Pilar Hernandez; Sebastian K. Herzog; Carmen Josse; Gonzalo Navarro; Víctor Pacheco; Bruce A. Stein; Martín E. Timaná; Antonio Tovar; Carolina Tovar; Julieta Vargas; Carlos M Zambrana-Torrelio
BackgroundThe Andes-Amazon basin of Peru and Bolivia is one of the most data-poor, biologically rich, and rapidly changing areas of the world. Conservation scientists agree that this area hosts extremely high endemism, perhaps the highest in the world, yet we know little about the geographic distributions of these species and ecosystems within country boundaries. To address this need, we have developed conservation data on endemic biodiversity (~800 species of birds, mammals, amphibians, and plants) and terrestrial ecological systems (~90; groups of vegetation communities resulting from the action of ecological processes, substrates, and/or environmental gradients) with which we conduct a fine scale conservation prioritization across the Amazon watershed of Peru and Bolivia. We modelled the geographic distributions of 435 endemic plants and all 347 endemic vertebrate species, from existing museum and herbaria specimens at a regional conservation practitioners scale (1:250,000-1:1,000,000), based on the best available tools and geographic data. We mapped ecological systems, endemic species concentrations, and irreplaceable areas with respect to national level protected areas.ResultsWe found that sizes of endemic species distributions ranged widely (< 20 km2 to > 200,000 km2) across the study area. Bird and mammal endemic species richness was greatest within a narrow 2500-3000 m elevation band along the length of the Andes Mountains. Endemic amphibian richness was highest at 1000-1500 m elevation and concentrated in the southern half of the study area. Geographical distribution of plant endemism was highly taxon-dependent. Irreplaceable areas, defined as locations with the highest number of species with narrow ranges, overlapped slightly with areas of high endemism, yet generally exhibited unique patterns across the study area by species group. We found that many endemic species and ecological systems are lacking national-level protection; a third of endemic species have distributions completely outside of national protected areas. Protected areas cover only 20% of areas of high endemism and 20% of irreplaceable areas. Almost 40% of the 91 ecological systems are in serious need of protection (= < 2% of their ranges protected).ConclusionsWe identify for the first time, areas of high endemic species concentrations and high irreplaceability that have only been roughly indicated in the past at the continental scale. We conclude that new complementary protected areas are needed to safeguard these endemics and ecosystems. An expansion in protected areas will be challenged by geographically isolated micro-endemics, varied endemic patterns among taxa, increasing deforestation, resource extraction, and changes in climate. Relying on pre-existing collections, publically accessible datasets and tools, this working framework is exportable to other regions plagued by incomplete conservation data.
Frontiers in Ecology and the Environment | 2013
Nancy B. Grimm; Michelle D. Staudinger; Amanda Staudt; Shawn L. Carter; F. Stuart Chapin; Peter Kareiva; Mary Ruckelshaus; Bruce A. Stein
As part of the 2014 US National Climate Assessment, over 60 subject-matter experts from government agencies, academia, nongovernmental organizations, and the private sector assessed the current and projected impacts of climate change on ecosystems, biodiversity, and ecosystem services. Here, we introduce and provide context for the papers included in this Special Issue, drawing upon the key findings from separate assessments of biodiversity, ecosystem structure and function, ecosystem services, climate-change impacts in the context of other stressors, and societal responses to change (ie climate adaptation). We also explain the assessment process and show how the current state of knowledge can be used to identify risks and guide future research and management initiatives.
Ecology | 2001
Erica Fleishman; Bruce A. Stein; Lynn S. Kutner; Jonathan S. Adams
Foreword Preface Contributors Participating Institutions Acknowledgements 1. Biodiversity: Our Precious Heritage 2. Discovering Life in America: Tools and Techniques of Biodiversity Inventory 3. A Remarkable Array: Species Diversity in the United States 4. Conservation Status of U.S. Species 5. State of the States: Geographic Patterns of Diversity, Rarity, and Endemism 6. The Geography of Imperilment: Targeting Conservation towards Critical Biodiversity Areas 7. More than the Sum of the Parts: Diversity and Status of Ecological Systems 8. Leading Threats to U.S. Biodiversity: Whats Threatening Imperiled Species 9. Strategies for Biodiversity Protection 10. Owning Up to Our Responsibilities: Who Owns Lands Important for Biodiversity? 11. Safeguarding Our Precious Heritage Appendix A: Extinct and missing species of the United States Appendix B: State Diversity, Endemism, and Rarity Appendix C: Kuchler Potential Natural Vegetation Types Appendix D: Principal Sources for the Natural Heritage Central Databases Literature Cited
Ecology | 2000
Bruce A. Stein; Lynn S. Kutner; Jonathan S. Adams; Ecologists Union
Frontiers in Ecology and the Environment | 2013
Michelle D. Staudinger; Shawn L. Carter; Molly S. Cross; Natalie S Dubois; J. Emmett Duffy; Carolyn A. F. Enquist; Roger Griffis; Jessica J. Hellmann; Joshua J. Lawler; John O'Leary; Scott A. Morrison; Lesley Sneddon; Bruce A. Stein; Laura M. Thompson; Woody Turner
Conservation Letters | 2016
Erik A. Beever; John O'Leary; Claudia Mengelt; Jordan M. West; Susan H. Julius; Nancy Green; Dawn R. Magness; Laura E. Petes; Bruce A. Stein; Adrienne B. Nicotra; Jessica J. Hellmann; Amanda L. Robertson; Michelle D. Staudinger; Andrew A. Rosenberg; Eleanora Babij; Jean Brennan; Gregor W. Schuurman; Gretchen E. Hofmann