Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bruce D. Dorsey is active.

Publication


Featured researches published by Bruce D. Dorsey.


Journal of Medicinal Chemistry | 2008

Discovery of a Potent, Selective, and Orally Active Proteasome Inhibitor for the Treatment of Cancer

Bruce D. Dorsey; Mohamed Iqbal; Sankar Chatterjee; Ernesto Menta; Raffaella Bernardini; Alberto Bernareggi; Paolo G Cassara; Germano D’Arasmo; Edmondo Ferretti; Sergio De Munari; Ambrogio Oliva; Gabriella Pezzoni; Cecilia Allievi; Ivan Strepponi; Bruce Ruggeri; Mark A. Ator; Michael T. Williams; John P. Mallamo

The ubiquitin-proteasome pathway plays a central role in regulation of the production and destruction of cellular proteins. These pathways mediate proliferation and cell survival, particularly in malignant cells. The successful development of the 20S human proteasome inhibitor bortezomib for the treatment of relapsed and refractory multiple myeloma has established this targeted intervention as an effective therapeutic strategy. Herein, the potent, selective, and orally bioavailable threonine-derived 20S human proteasome inhibitor that has been advanced to preclinical development, [(1R)-1-[[(2 S,3 R)-3-hydroxy-2-[(6-phenylpyridine-2-carbonyl)amino]-1-oxobutyl]amino]-3-methylbutyl]boronic acid 20 (CEP-18770), is disclosed.


Bioorganic & Medicinal Chemistry Letters | 1998

L-374,087, an efficacious, orally bioavailable, pyridinone acetamide thrombin inhibitor

Philip E.J. Sanderson; Kellie J. Cutrona; Bruce D. Dorsey; Dona L. Dyer; Colleen McDonough; Adel M. Naylor-Olsen; I-Wu Chen; Zhongguo Chen; Jacquelynn J. Cook; Stephen J. Gardell; Julie A. Krueger; S.Dale Lewis; Jiunn H. Lin; Bobby J. Lucas; Elizabeth A. Lyle; Joseph J. Lynch; Maria T. Stranieri; Kari Vastag; Jules A. Shafer; Joseph P. Vacca

Replacement of the amidinopiperidine P1 group of 3-benzylsulfonylamino-6-methyl-2-pyridinone acetamide thrombin inhibitor L-373,890 (2) with a mildly basic 5-linked 2-amino-6-methylpyridine results in an equipotent compound L-374,087 (5, Ki = 0.5 nM). Compound 5 is highly selective for thrombin over trypsin, is efficacious in the rat ferric chloride model of arterial thrombosis and is orally bioavailable in dogs and cynomolgus monkeys. The structural basis for the critical importance of both methyl groups in 5 was confirmed by X-ray crystallography.


Molecular Cancer Therapeutics | 2012

CEP-28122, a Highly Potent and Selective Orally Active Inhibitor of Anaplastic Lymphoma Kinase with Antitumor Activity in Experimental Models of Human Cancers

Mangeng Cheng; Matthew R. Quail; Diane E. Gingrich; Gregory E Ott; Lihui Lu; Weihua Wan; Mark S. Albom; Thelma S. Angeles; Lisa D. Aimone; Flavio Cristofani; Rodolfo Machiorlatti; Cristina Abele; Mark A. Ator; Bruce D. Dorsey; Giorgio Inghirami; Bruce Ruggeri

Anaplastic lymphoma kinase (ALK) is constitutively activated in a number of human cancer types due to chromosomal translocations, point mutations, and gene amplification and has emerged as an excellent molecular target for cancer therapy. Here we report the identification and preclinical characterization of CEP-28122, a highly potent and selective orally active ALK inhibitor. CEP-28122 is a potent inhibitor of recombinant ALK activity and cellular ALK tyrosine phosphorylation. It induced concentration-dependent growth inhibition/cytotoxicity of ALK-positive anaplastic large-cell lymphoma (ALCL), non-small cell lung cancer (NSCLC), and neuroblastoma cells, and displayed dose-dependent inhibition of ALK tyrosine phosphorylation in tumor xenografts in mice, with substantial target inhibition (>90%) for more than 12 hours following single oral dosing at 30 mg/kg. Dose-dependent antitumor activity was observed in ALK-positive ALCL, NSCLC, and neuroblastoma tumor xenografts in mice administered CEP-28122 orally, with complete/near complete tumor regressions observed following treatment at doses of 30 mg/kg twice daily or higher. Treatment of mice bearing Sup-M2 tumor xenografts for 4 weeks and primary human ALCL tumor grafts for 2 weeks at 55 or 100 mg/kg twice daily led to sustained tumor regression in all mice, with no tumor reemergence for more than 60 days postcessation of treatment. Conversely, CEP-28122 displayed marginal antitumor activity against ALK-negative human tumor xenografts under the same dosing regimens. Administration of CEP-28122 was well tolerated in mice and rats. In summary, CEP-28122 is a highly potent and selective orally active ALK inhibitor with a favorable pharmaceutical and pharmacokinetic profile and robust and selective pharmacologic efficacy against ALK-positive human cancer cells and tumor xenograft models in mice. Mol Cancer Ther; 11(3); 670–9. ©2011 AACR.


ACS Medicinal Chemistry Letters | 2010

Discovery of a Potent Inhibitor of Anaplastic Lymphoma Kinase with in Vivo Antitumor Activity

Gregory R. Ott; Rabindranath Tripathy; Mangeng Cheng; Robert J. McHugh; Andrew V. Anzalone; Ted L. Underiner; Matthew A. Curry; Matthew R. Quail; Lihui Lu; Weihua Wan; Thelma S. Angeles; Mark S. Albom; Lisa D. Aimone; Mark A. Ator; Bruce Ruggeri; Bruce D. Dorsey

A series of novel 7-amino-1,3,4,5-tetrahydrobenzo[b]azepin-2-one derivatives within the diaminopyrimidine class of kinase inhibitors were identified that target anaplastic lymphoma kinase (ALK). These inhibitors are potent against ALK in an isolated enzyme assay and inhibit autophosphorylation of the oncogenic fusion protein NPM-ALK in anaplastic large cell lymphoma (ALCL) cell lines. The lead inhibitor 15, which incorporates a bicyclo[2.2.1]hept-5-ene ring system in place of an aryl moiety, activates the pro-apoptotic caspases (3 and 7) and displays selective cytotoxicity against ALK-positive ALCL cells. Furthermore, 15 provides more than 40-fold selectivity against the structurally related insulin receptor, is orally bioavailable in multiple species, and displays in vivo antitumor efficacy when dosed orally in ALK-positive ALCL tumor xenografts in Scid mice.


Journal of Medicinal Chemistry | 2011

2,7-disubstituted-pyrrolo[2,1-f][1,2,4]triazines: new variant of an old template and application to the discovery of anaplastic lymphoma kinase (ALK) inhibitors with in vivo antitumor activity.

Gregory R. Ott; Gregory J. Wells; Tho V. Thieu; Matthew R. Quail; Joseph G. Lisko; Eugen F. Mesaros; Diane E. Gingrich; Arup K. Ghose; Weihua Wan; Lihui Lu; Mangeng Cheng; Mark S. Albom; Thelma S. Angeles; Zeqi Huang; Lisa D. Aimone; Mark A. Ator; Bruce Ruggeri; Bruce D. Dorsey

A novel 2,7-disubstituted-pyrrolo[2,1-f][1,2,4]triazine scaffold has been designed as a new kinase inhibitor platform mimicking the bioactive conformation of the well-known diaminopyrimidine motif. The design, synthesis, and validation of this new pyrrolo[2,1-f][1,2,4]triazine scaffold will be described for inhibitors of anaplastic lymphoma kinase (ALK). Importantly, incorporation of appropriate potency and selectivity determinants has led to the discovery of several advanced leads that were orally efficacious in animal models of anaplastic large cell lymphoma (ALCL). A lead inhibitor (30) displaying superior efficacy was identified and in depth in vitro/in vivo characterization will be presented.


Journal of Medicinal Chemistry | 2012

Identification of 1-(3-(6,7-Dimethoxyquinazolin-4-yloxy)phenyl)-3-(5-(1,1,1-trifluoro-2-methylpropan-2-yl)isoxazol-3-yl)urea Hydrochloride (CEP-32496), a Highly Potent and Orally Efficacious Inhibitor of V-RAF Murine Sarcoma Viral Oncogene Homologue B1 (BRAF) V600E

Rowbottom Mw; Faraoni R; Qi Chao; Campbell Bt; Andiliy G. Lai; Setti E; Ezawa M; Sprankle Kg; Sunny Abraham; Lan Tran; Struss B; Gibney M; Armstrong Rc; Ruwanthi N. Gunawardane; Nepomuceno Rr; Valenta I; Hua H; Michael F. Gardner; Cramer; Dana Gitnick; Insko De; Julius L. Apuy; Susan Jones-Bolin; Ghose Ak; Herbertz T; Mark A. Ator; Bruce D. Dorsey; Bruce Ruggeri; Michael T. Williams; Shripad S. Bhagwat

The Ras/RAF/MEK/ERK mitogen-activated protein kinase (MAPK) signaling pathway plays a central role in the regulation of cell growth, differentiation, and survival. Expression of mutant BRAF(V600E) results in constitutive activation of the MAPK pathway, which can lead to uncontrolled cellular growth. Herein, we describe an SAR optimization campaign around a series of quinazoline derived BRAF(V600E) inhibitors. In particular, the bioisosteric replacement of a metabolically sensitive tert-butyl group with fluorinated alkyl moieties is described. This effort led directly to the identification of a clinical candidate, compound 40 (CEP-32496). Compound 40 exhibits high potency against several BRAF(V600E)-dependent cell lines and selective cytotoxicity for tumor cell lines expressing mutant BRAF(V600E) versus those containing wild-type BRAF. Compound 40 also exhibits an excellent PK profile across multiple preclinical species. In addition, significant oral efficacy was observed in a 14-day BRAF(V600E)-dependent human Colo-205 tumor xenograft mouse model, upon dosing at 30 and 100 mg/kg BID.


Journal of Medicinal Chemistry | 2012

A Selective, Orally Bioavailable 1,2,4-Triazolo[1,5-A]Pyridine-Based Inhibitor of Janus Kinase 2 for Use in Anticancer Therapy: Discovery of Cep-33779.

Benjamin J. Dugan; Diane E. Gingrich; Eugen F. Mesaros; Karen L. Milkiewicz; Matthew A. Curry; Allison L. Zulli; Pawel Dobrzanski; Cynthia Serdikoff; Mahfuza Jan; Thelma S. Angeles; Mark S. Albom; Jennifer L. Mason; Lisa D. Aimone; Sheryl L. Meyer; Zeqi Huang; Kevin J. Wells-Knecht; Mark A. Ator; Bruce Ruggeri; Bruce D. Dorsey

Members of the JAK family of nonreceptor tyrosine kinases play a critical role in the growth and progression of many cancers and in inflammatory diseases. JAK2 has emerged as a leading therapeutic target for oncology, providing a rationale for the development of a selective JAK2 inhibitor. A program to optimize selective JAK2 inhibitors to combat cancer while reducing the risk of immune suppression associated with JAK3 inhibition was undertaken. The structure-activity relationships and biological evaluation of a novel series of compounds based on a 1,2,4-triazolo[1,5-a]pyridine scaffold are reported. Para substitution on the aryl at the C8 position of the core was optimum for JAK2 potency (17). Substitution at the C2 nitrogen position was required for cell potency (21). Interestingly, meta substitution of C2-NH-aryl moiety provided exceptional selectivity for JAK2 over JAK3 (23). These efforts led to the discovery of CEP-33779 (29), a novel, selective, and orally bioavailable inhibitor of JAK2.


Molecular Cancer Therapeutics | 2012

CEP-32496: A Novel Orally Active BRAF V600E Inhibitor with Selective Cellular and In Vivo Antitumor Activity

Joyce K. James; Bruce Ruggeri; Robert C. Armstrong; Martin W. Rowbottom; Susan Jones-Bolin; Ruwanthi N. Gunawardane; Pawel Dobrzanski; Michael F. Gardner; Hugh Zhao; Merryl Cramer; Kathryn Hunter; Ronald R. Nepomuceno; Mangeng Cheng; Dana Gitnick; Mehran Yazdanian; Darren E. Insko; Mark A. Ator; Julius L. Apuy; Raffaella Faraoni; Bruce D. Dorsey; Michael T. Williams; Shripad S. Bhagwat; Mark W. Holladay

Mutations in the BRAF gene have been identified in approximately 7% of cancers, including 60% to 70% of melanomas, 29% to 83% of papillary thyroid carcinomas, 4% to 16% colorectal cancers, and a lesser extent in serous ovarian and non–small cell lung cancers. The V600E mutation is found in the vast majority of cases and is an activating mutation, conferring transforming and immortalization potential to cells. CEP-32496 is a potent BRAF inhibitor in an in vitro binding assay for mutated BRAFV600E (Kd BRAFV600E = 14 nmol/L) and in a mitogen-activated protein (MAP)/extracellular signal–regulated (ER) kinase (MEK) phosphorylation (pMEK) inhibition assay in human melanoma (A375) and colorectal cancer (Colo-205) cell lines (IC50 = 78 and 60 nmol/L). In vitro, CEP-32496 has multikinase binding activity at other cancer targets of interest; however, it exhibits selective cellular cytotoxicity for BRAFV600E versus wild-type cells. CEP-32496 is orally bioavailable in multiple preclinical species (>95% in rats, dogs, and monkeys) and has single oral dose pharmacodynamic inhibition (10–55 mg/kg) of both pMEK and pERK in BRAFV600E colon carcinoma xenografts in nude mice. Sustained tumor stasis and regressions are observed with oral administration (30–100 mg/kg twice daily) against BRAFV600E melanoma and colon carcinoma xenografts, with no adverse effects. Little or no epithelial hyperplasia was observed in rodents and primates with prolonged oral administration and sustained exposure. CEP-32496 benchmarks favorably with respect to other kinase inhibitors, including RAF-265 (phase I), sorafenib, (approved), and vemurafenib (PLX4032/RG7204, approved). CEP-32496 represents a novel and pharmacologically active BRAF inhibitor with a favorable side effect profile currently in clinical development. Mol Cancer Ther; 11(4); 930–41. ©2012 AACR.


Journal of Medicinal Chemistry | 2012

Discovery of an Orally Efficacious Inhibitor of Anaplastic Lymphoma Kinase

Diane E. Gingrich; Joseph G. Lisko; Matthew A. Curry; Mangeng Cheng; Matthew R. Quail; Lihui Lu; Weihua Wan; Mark S. Albom; Thelma S. Angeles; Lisa D. Aimone; R. Curtis; Kevin J. Wells-Knecht; Gregory R. Ott; Arup K. Ghose; Mark A. Ator; Bruce Ruggeri; Bruce D. Dorsey

Anaplastic lymphoma kinase (ALK) is a promising therapeutic target for the treatment of cancer, supported by considerable favorable preclinical and clinical activities over the past several years and culminating in the recent FDA approval of the ALK inhibitor crizotinib. Through a series of targeted modifications on an ALK inhibitor diaminopyrimidine scaffold, our research group has driven improvements in ALK potency, kinase selectivity, and overall pharmaceutical properties. Optimization of this scaffold has led to the identification of a potent and efficacious inhibitor of ALK, 25b. A striking feature of 25b over previously described ALK inhibitors is its >600-fold selectivity over insulin receptor (IR), a closely related kinase family member. Most importantly, 25b exhibited dose proportional escalation in rat compared to compound 3 which suffered dose limiting absorption preventing further advancement. Compound 25b exhibited significant in vivo antitumor efficacy when dosed orally in an ALK-positive ALCL tumor xenograft model in SCID mice, warranting further assessment in advanced preclinical models.


Bioorganic & Medicinal Chemistry Letters | 2003

Azaindoles: Moderately basic P1 groups for enhancing the selectivity of thrombin inhibitors

Philip E.J. Sanderson; Matthew Stanton; Bruce D. Dorsey; Terry A. Lyle; Colleen McDonough; William M. Sanders; Kelly L. Savage; Adel M. Naylor-Olsen; Julie A. Krueger; S.Dale Lewis; Bobby J. Lucas; Joseph J. Lynch; Youwei Yan

Starting from a 2-amino-6-methylpyridine P1 group and following a strategy of enlarging it whilst reducing its polarity, we have developed a series of potent, moderately basic azaindoles which are intrinsically much more selective for thrombin versus trypsin. Certain pyrazinone acetamide azaindole derivatives have pharmacokinetic parameters after oral administration to dogs, or efficacy in vitro, comparable to an optimized pyrazinone acetamide 2-amino-6-methylpyridine derivative.

Collaboration


Dive into the Bruce D. Dorsey's collaboration.

Top Co-Authors

Avatar

M. Katharine Holloway

United States Military Academy

View shared research outputs
Top Co-Authors

Avatar

James P. Guare

United States Military Academy

View shared research outputs
Top Co-Authors

Avatar

Randall W. Hungate

United States Military Academy

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge