Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bruce E. Woodgate is active.

Publication


Featured researches published by Bruce E. Woodgate.


The Astrophysical Journal | 2000

Overview of the Far Ultraviolet Spectroscopic Explorer Mission

H. W. Moos; Webster Cash; L. L. Cowie; Arthur F. Davidsen; Andrea K. Dupree; Paul D. Feldman; Scott D. Friedman; James C. Green; R. F. Green; C. Gry; J. B. Hutchings; Edward B. Jenkins; J. L. Linsky; Roger F. Malina; Andrew G. Michalitsianos; Blair D. Savage; J. M. Shull; O. H. W. Siegmund; Theodore P. Snow; George Sonneborn; A. Vidal-Madjar; Allan J. Willis; Bruce E. Woodgate; D. G. York; Thomas B. Ake; B-G Andersson; John Paul Andrews; Robert H. Barkhouser; Luciana Bianchi; William P. Blair

The Far Ultraviolet Spectroscopic Explorer satellite observes light in the far-ultraviolet spectral region, 905-1187 Angstrom, with a high spectral resolution. The instrument consists of four co-aligned prime-focus telescopes and Rowland spectrographs with microchannel plate detectors. Two of the telescope channels use Al :LiF coatings for optimum reflectivity between approximately 1000 and 1187 Angstrom, and the other two channels use SiC coatings for optimized throughput between 905 and 1105 Angstrom. The gratings are holographically ruled to correct largely for astigmatism and to minimize scattered light. The microchannel plate detectors have KBr photocathodes and use photon counting to achieve good quantum efficiency with low background signal. The sensitivity is sufficient to examine reddened lines of sight within the Milky Way and also sufficient to use as active galactic nuclei and QSOs for absorption-line studies of both Milky Way and extragalactic gas clouds. This spectral region contains a number of key scientific diagnostics, including O VI, H I, D I, and the strong electronic transitions of H-2 and HD.


Publications of the Astronomical Society of the Pacific | 1998

The Space Telescope Imaging Spectrograph Design

Bruce E. Woodgate; Randy A. Kimble; Charles W. Bowers; Steven B. Kraemer; Mary Elizabeth Kaiser; A. C. Danks; J. F. Grady; J. J. Loiacono; M. Brumfield; L. Feinberg; T. R. Gull; S. R. Heap; Stephen P. Maran; Don J. Lindler; D. Hood; W. Meyer; C. VanHouten; Vic S. Argabright; S. Franka; R. Bybee; D. Dorn; M. Bottema; R. Woodruff; D. Michika; J. Sullivan; J. Hetlinger; C. Ludtke; R. Stocker; A. Delamere; D. Rose

ABSTRACT The Space Telescope Imaging Spectrograph (STIS) instrument was installed on the Hubble Space Telescope (HST) during the second servicing mission, in 1997 February. Four bands cover the wavelength range of 115–1000 nm, with spectral resolving powers between 26 and 200,000. Camera modes are used for target acquisition and deep imaging. Correction for HSTs spherical aberration and astigmatism is included. The 115–170 nm range is covered by a CsI MAMA (Multianode Microchannel Array) detector and the 165–310 nm range by a Cs2Te MAMA, each with a format of \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cy...


The Astrophysical Journal | 1998

The On-Orbit Performance of the Space Telescope Imaging Spectrograph

Randy A. Kimble; Bruce E. Woodgate; Charles W. Bowers; S. B. Kraemer; Mary Elizabeth Kaiser; T. R. Gull; S. R. Heap; Anthony C. Danks; A. Boggess; Richard F. Green; J. B. Hutchings; Edward B. Jenkins; Charles L. Joseph; J. L. Linsky; Stephen P. Maran; H. W. Moos; Fred L. Roesler; J. G. Timothy; Donna E. Weistrop; J. F. Grady; J. J. Loiacono; L. W. Brown; Mark D. Brumfield; Lee D. Feinberg; M. N. Isaacs; Carolyn A. Krebs; V. L. Krueger; R. W. Melcher; F. J. Rebar; H. D. Vitagliano

The Space Telescope Imaging Spectrograph (STIS) was successfully installed into the Hubble Space Telescope (HST) in 1997 February, during the second HST servicing mission, STS-82. STIS is a versatile spectrograph, covering the 115-1000 nm wavelength range in a variety of spectroscopic and imaging modes that take advantage of the angular resolution, unobstructed wavelength coverage, and dark sky offered by the HST. In the months since launch, a number of performance tests and calibrations have been carried out and are continuing. These tests demonstrate that the instrument is performing very well. We present here a synopsis of the results to date.


The Astrophysical Journal | 2005

HST STIS spectroscopy of the triple nucleus of M31: two nested disks in keplerian rotation around a supermassive black hole

Ralf Bender; John Kormendy; Gary Allen Bower; Richard Green; Jens Thomas; Anthony C. Danks; Theodore R. Gull; J. B. Hutchings; Charles L. Joseph; Mary Elizabeth Kaiser; Tod R. Lauer; Charles H. Nelson; Douglas O. Richstone; Donna E. Weistrop; Bruce E. Woodgate

We present Hubble Space Telescope (HST) spectroscopy of the nucleus of M31 obtained with the Space TelescopeImagingSpectrograph(STIS).SpectrathatincludetheCaiiinfraredtriplet(k ’ 85008)seeonlythered giant stars in the double brightness peaks P1 and P2. In contrast, spectra taken atk ’ 3600 51008 are sensitive to thetinybluenucleusembeddedinP2,thelowersurfacebrightnessnucleusofthegalaxy.P2 hasaK-typespectrum, but we find that the blue nucleus has an A-type spectrum: it shows strong Balmer absorption lines. Hence, the blue nucleus is blue not because of AGN light but rather because it is dominated by hot stars. We show that the spectrum is well described by A0 giant stars, A0 dwarf stars, or a 200 Myr old, single-burst stellar population. White dwarfs, in contrast, cannot fit the blue nucleus spectrum. Given the small likelihood for stellar collisions, recent star formation appears to be the most plausible origin of the blue nucleus. In stellar population, size, and velocity dispersion, the blue nucleus is so different from P1 and P2 that we call it P3 and refer to the nucleus of M31 as triple. Because P2 and P3 have very different spectra, we can make a clean decomposition of the red and blue stars and hence measure the light distribution and kinematics of eachuncontaminated by the other. The line-of-sight velocity distributions of the red stars near P2 strengthen the support for Tremaine’s eccentric disk model. Their wings indicate the presence of stars with velocities of up to 1000 km s � 1 on the anti-P1 side of P2. The kinematics of P3 are consistent with a circular stellar disk in Keplerian rotation around a supermassive black hole.If the P3 diskis perfectlythin,thentheinclination anglei ’ 55 � isidentical withinthe errorsto theinclination of the eccentric disk models for P1+P2 by Peiris & Tremaine and by Salow & Statler. Both disks rotate in the same sense and are almost coplanar. The observed velocity dispersion of P3 is largely caused by blurred rotation and has a maximum value of � ¼ 1183 � 201 km s � 1 . This is much larger than the dispersion � ’ 250 km s � 1 of the red stars along the same line of sight and is the largest integrated velocity dispersion observed in any galaxy. The rotation curve of P3 is symmetric around its center. It reaches an observed velocity of V ¼ 618 � 81 km s � 1 at radius 0B05 ¼ 0:19 pc, where the observed velocity dispersion is � ¼ 674 � 95 km s � 1 . The corresponding circular rotation velocity at this radius is � 1700 km s � 1 . We therefore confirm earlier suggestions that the central dark object


Solar Physics | 1980

The Ultraviolet Spectrometer and Polarimeter on the Solar Maximum Mission

Bruce E. Woodgate; E. Tandberg-Hanssen; E. C. Bruner; J. M. Beckers; John C. Brandt; W. Henze; C. L. Hyder; M. W. Kalet; P. J. Kenny; E. D. Knox; A. G. Michalitsianos; R. Rehse; R. A. Shine; H. D. Tinsley

The Ultraviolet Spectrometer and Polarimeter (UVSP) on the Solar Maximum Mission spacecraft is described, including the experiment objectives, system design, performance, and modes of operation. The instrument operates in the wavelength range 1150–3600 Å with better than 2 arc sec spatial resolution, raster range 256 × 256 arc sec2, and 20 mÅ spectral resolution in second order. Observations can be made with specific sets of 4 lines simultaneously, or with both sides of 2 lines simultaneously for velocity and polarization. A rotatable retarder can be inserted into the spectrometer beam for measurement of Zeeman splitting and linear polarization in the transition region and chromosphere.


Astrophysical Journal Supplement Series | 2002

Abundances of Deuterium, Nitrogen, and Oxygen in the Local Interstellar Medium: Overview of First Results from the FUSE Mission

H. W. Moos; K. R. Sembach; A. ‐Madjar; D. G. York; Scott D. Friedman; G. Hébrard; Jeffrey W. Kruk; Nicolas Lehner; Martin Lemoine; George Sonneborn; Brian E. Wood; Thomas B. Ake; M. Andre; William P. Blair; Pierre Chayer; C. Gry; Andrea K. Dupree; R. Ferlet; Paul D. Feldman; James C. Green; J. C. Howk; J. B. Hutchings; Edward B. Jenkins; Jeffrey L. Linsky; E. M. Murphy; William R. Oegerle; Cristina M. Oliveira; Katherine C. Roth; David J. Sahnow; Blair D. Savage

Observations obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE) have been used to determine the column densities of D i ,N i, and O i along seven sight lines that probe the local interstellar medium (LISM) at distances from 37 to 179 pc. Five of the sight lines are within the Local Bubble, and two penetrate the surrounding H i wall. Reliable values of N(H i) were determined for five of the sight lines from Hubble Space Telescope (HST) data, International Ultraviolet Explorer (IUE) data, and published Extreme Ultraviolet Explorer (EUVE) measurements. The weighted mean of D i/H i for these five sight lines is ð1:52 � 0:08 Þ� 10 � 5 (1 � uncertainty in the mean). It is likely that the D i/H i ratio in the Local Bubble has a single value. The D i/O i ratio for the five sight lines within the Local Bubble is ð3:76 � 0:20 Þ� 10 � 2 .I t is likely that O i column densities can serve as a proxy for H i in the Local Bubble. The weighted mean for O i/H i for the seven FUSE sight lines is ð3:03 � 0:21 Þ� 10 � 4 , comparable to the weighted mean ð3:43 � 0:15 Þ� 10 � 4 reported for 13 sight lines probing larger distances and higher column densities. The FUSE weighted mean of N i/H i for five sight lines is half that reported by Meyer and colleagues for seven sight lines with larger distances and higher column densities. This result combined with the variability of O i/N i (six sight lines) indicates that at the low column densities found in the LISM, nitrogen ionization balance is important. Thus, unlike O i ,N i cannot be used as a proxy for H i or as a metallicity indicator in the LISM. Subject headings: cosmology: observations — Galaxy: abundances — ISM: abundances — ISM: evolution — ultraviolet: ISM


The Astrophysical Journal | 1999

Hubble Space Telescope Space Telescope Imaging Spectrograph Coronagraphic Imaging of the Herbig Ae Star AB Aurigae

C. A. Grady; Bruce E. Woodgate; Frederick C. Bruhweiler; A. Boggess; Philip C. Plait; Don J. Lindler; Mark C. Clampin; Paul Kalas

We present the first broadband, coronagraphic Hubble Space Telescope images of the bright, optically visible, isolated Herbig Ae star AB Aurigae. The Space Telescope Imaging Spectrograph (STIS) images reveal extended circumstellar nebulosity (r ≈ 1300 AU) covering the region of the millimeter continuum and CO disk. The structure is observed in the disk on spatial scales down to 01 (14 AU) and exhibits a north-south asymmetry. A comparison of the STIS data with scattering models for flared disks or disks + envelopes suggests that the disk inclination is i ≤ 45° from the plane of the sky.


The Astrophysical Journal | 2001

A Pair of Compact Red Galaxies at Redshift 2.38, Immersed in a 100 Kiloparsec Scale Lyα Nebula*

Paul J. Francis; Gerard M. Williger; Nicholas R. Collins; Povilas Palunas; Eliot M. Malumuth; Bruce E. Woodgate; Harry I. Teplitz; Alain Smette; Ralph S. Sutherland; Anthony C. Danks; R. S. Hill; D. J. Lindler; Randy A. Kimble; Sara R. Heap; J. B. Hutchings

We present Hubble Space Telescope (HST) and ground-based observations of a pair of galaxies at redshift 2.38, which are collectively known as 2142 4420 B1 (Francis et al. 1996). The two galaxies are both luminous extremely red objects (EROs), separated by 0.8 ′′ . They are embedded within a 100 kpc scale diffuse


The Astrophysical Journal | 1998

Kinematics of the Nuclear Ionized Gas in the Radio Galaxy M84 (NGC 4374)

Gary Allen Bower; Richard F. Green; Anthony C. Danks; T. R. Gull; S. R. Heap; J. B. Hutchings; Charles L. Joseph; Mary Elizabeth Kaiser; Randy A. Kimble; S. B. Kraemer; Donna E. Weistrop; Bruce E. Woodgate; D. J. Lindler; R. S. Hill; Eliot M. Malumuth; Stefi A. Baum; Vicki L. Sarajedini; Timothy M. Heckman; Andrew S. Wilson; Douglas O. Richstone

We present optical long-slit spectroscopy of the nucleus of the nearby radio galaxy M84 (NGC 4374 = 3C 272.1) obtained with the Space Telescope Imaging Spectrograph aboard the Hubble Space Telescope. Our spectra reveal that the nuclear gas disk seen in the Wide Field Planetary Camera 2 imaging by Bower et al. is rotating rapidly. The velocity curve has an S-shape with a peak amplitude of 400 km s−1 at 01 = 8 pc from the nucleus. To model the observed gas kinematics, we construct a thin Keplerian disk model that fits the data well if the rotation axis of the gas disk is aligned with the radio jet axis. These models indicate that the gasdynamics are driven by a nuclear compact mass of 1.5 × 109 M☉ with an uncertainty range of (0.9-2.6) × 109 M☉, and that the inclination of the disk with respect to the plane of the sky is 75°-85°. Of this nuclear mass, only ≤2 × 107 M☉ can possibly be attributed to luminous mass. Thus, we conclude that a dark compact mass (most likely a supermassive black hole) resides in the nucleus of M84.


Solar Physics | 1982

Unusual coronal activity following the flare of 6 November 1980

Z. Švestka; Brian R. Dennis; M. Pick; A. Raoult; C. G. Rapley; R. T. Stewart; Bruce E. Woodgate

For almost 30 hr after the major (gamma-ray) two-ribbon flare on 6 November 1980, 03:30 UT, the Hard X-Ray Imaging Spectrometer (HXIS) aboard the SMM satellite imaged in > 3.5 keV X-rays a gigantic arch extending above the active region over the limb. Like a similar configuration on 22 May 1980, this arch formed the lowest part of a stationary post-flare radio noise storm recorded at metric wavelengths at Nançay and Culgoora. 6.5 hr after the flare a coronal region below the arch started quasi-periodic pulsations in X-ray brightness, observed by several SMM instruments. These brightness variations had no response in the chromosphere (Hα), very little in the transition layer (O v), but they clearly correlated with similar variations in brightness at 169 MHz. There were 13 pulses of this kind, with apparent periodicity of about 20 min, until another flare occurred in the active region at ∼ 15:00 UT. All the brightenings appeared within a localized area of about 30000 km2 in the northern part of the active region, but they definitely did not occur all at the same place.The top of the X-ray arch, at an altitude of ∼ 155 000 km, was continuously and smoothly decaying, taking no part in the striking variations below it. Therefore, the area variable in brightness does not seem to be the footpoint of the arch, as we supposed for similar variations on 22 May. More likely, it is a separate region connected directly with the source of the radio storm; particles accelerated in the storm may be dumped into the low corona and cause the X-ray enhancements. The X-ray arch was enhanced by two orders of magnitude in 3.5–5.5 keV X-ray counts and the temperature increased from ≲ 7.3 × 106 to 9 × 106 K when the new two-ribbon flare occurred at 15:00 UT. Thus, it is possible that energy is brought into the arch via the upper parts of the reconnecting flare loops - a process that can continue for hours.

Collaboration


Dive into the Bruce E. Woodgate's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. A. Grady

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Charles W. Bowers

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul J. Francis

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Anthony C. Danks

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Povilas Palunas

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Don J. Lindler

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Harry I. Teplitz

California Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge