Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bruce Gerlitz is active.

Publication


Featured researches published by Bruce Gerlitz.


Nature | 2008

Proteomic analysis of active multiple sclerosis lesions reveals therapeutic targets

May H. Han; Sun-Il Hwang; Dolly Roy; Deborah H. Lundgren; Jordan V. Price; Shalina S. Ousman; Guy Haskin Fernald; Bruce Gerlitz; William H. Robinson; Sergio E. Baranzini; Brian W. Grinnell; Cedric S. Raine; Raymond A. Sobel; David K. Han; Lawrence Steinman

Understanding the neuropathology of multiple sclerosis (MS) is essential for improved therapies. Therefore, identification of targets specific to pathological types of MS may have therapeutic benefits. Here we identify, by laser-capture microdissection and proteomics, proteins unique to three major types of MS lesions: acute plaque, chronic active plaque and chronic plaque. Comparative proteomic profiles identified tissue factor and protein C inhibitor within chronic active plaque samples, suggesting dysregulation of molecules associated with coagulation. In vivo administration of hirudin or recombinant activated protein C reduced disease severity in experimental autoimmune encephalomyelitis and suppressed Th1 and Th17 cytokines in astrocytes and immune cells. Administration of mutant forms of recombinant activated protein C showed that both its anticoagulant and its signalling functions were essential for optimal amelioration of experimental autoimmune encephalomyelitis. A proteomic approach illuminated potential therapeutic targets selective for specific pathological stages of MS and implicated participation of the coagulation cascade.


Nature Medicine | 2007

Activated protein C protects against diabetic nephropathy by inhibiting endothelial and podocyte apoptosis.

Berend Isermann; Ilya A. Vinnikov; Thati Madhusudhan; S. Herzog; Muhammed Kashif; Janusch Blautzik; Marcus Alexandre Finzi Corat; Martin Zeier; Erwin Blessing; Jun Oh; Bruce Gerlitz; David T. Berg; Brian W. Grinnell; Triantafyllos Chavakis; Charles T. Esmon; Hartmut Weiler; Angelika Bierhaus; Peter P. Nawroth

Data providing direct evidence for a causative link between endothelial dysfunction, microvascular disease and diabetic end-organ damage are scarce. Here we show that activated protein C (APC) formation, which is regulated by endothelial thrombomodulin, is reduced in diabetic mice and causally linked to nephropathy. Thrombomodulin-dependent APC formation mediates cytoprotection in diabetic nephropathy by inhibiting glomerular apoptosis. APC prevents glucose-induced apoptosis in endothelial cells and podocytes, the cellular components of the glomerular filtration barrier. APC modulates the mitochondrial apoptosis pathway via the protease-activated receptor PAR-1 and the endothelial protein C receptor EPCR in glucose-stressed cells. These experiments establish a new pathway, in which hyperglycemia impairs endothelial thrombomodulin-dependent APC formation. Loss of thrombomodulin-dependent APC formation interrupts cross-talk between the vascular compartment and podocytes, causing glomerular apoptosis and diabetic nephropathy. Conversely, maintaining high APC levels during long-term diabetes protects against diabetic nephropathy.


Journal of Clinical Investigation | 2007

Crucial role of the protein C pathway in governing microvascular inflammation in inflammatory bowel disease

Franco Scaldaferri; Miquel Sans; Stefania Vetrano; C. Graziani; Raimondo De Cristofaro; Bruce Gerlitz; Alessandro Repici; Vincenzo Arena; Alberto Malesci; Julián Panés; Brian W. Grinnell; Silvio Danese

Endothelial protein C receptor (EPCR) and thrombomodulin (TM) are expressed at high levels in the resting microvasculature and convert protein C (PC) into its activated form, which is a potent anticoagulant and antiinflammatory molecule. Here we provide evidence that in Crohn disease (CD) and ulcerative colitis (UC), the 2 major forms of inflammatory bowel disease (IBD), there was loss of expression of endothelial EPCR and TM, which in turns caused impairment of PC activation by the inflamed mucosal microvasculature. In isolated human intestinal endothelial cells, administration of recombinant activated PC had a potent antiinflammatory effect, as demonstrated by downregulated cytokine-dependent cell adhesion molecule expression and chemokine production as well as inhibited leukocyte adhesion. In vivo, administration of activated PC was therapeutically effective in ameliorating experimental colitis as evidenced by reduced weight loss, disease activity index, and histological colitis scores as well as inhibited leukocyte adhesion to the inflamed intestinal vessels. The results suggest that the PC pathway represents a new system crucially involved in governing intestinal homeostasis mediated by the mucosal microvasculature. Restoring the PC pathway may represent a new therapeutic approach to suppress intestinal inflammation in IBD.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Engineering the proteolytic specificity of activated protein C improves its pharmacological properties

David T. Berg; Bruce Gerlitz; Jing Shang; Tommy Smith; Paula Santa; Mark A. Richardson; Ken D. Kurz; Brian W. Grinnell; Ken Mace; Bryan Edward Jones

Human activated protein C (APC) is an antithrombotic, antiinflammatory serine protease that plays a central role in vascular homeostasis, and activated recombinant protein C, drotrecogin alfa (activated), has been shown to reduce mortality in patients with severe sepsis. Similar to other serine proteases, functional APC levels are regulated by the serine protease inhibitor family of proteins including α1-antitrypsin and protein C inhibitor. Using APC–substrate modeling, we designed and produced a number of derivatives with the goal of altering the proteolytic specificity of APC such that the variants exhibited resistance to inactivation by protein C inhibitor and α1-antitrypsin yet maintained their primary anticoagulant activity. Substitutions at Leu-194 were of particular interest, because they exhibited 4- to 6-fold reductions in the rate of inactivation in human plasma and substantially increased pharmacokinetic profiles compared with wild-type APC. This was achieved with minimal impairment of the anticoagulant/antithrombotic activity of APC. These data demonstrate the ability to selectively modulate substrate specificity and subsequently affect in vivo performance and suggest therapeutic opportunities for the use of protein C derivatives in disease states with elevated serine protease inhibitor levels.


Critical Care Medicine | 2004

Evaluation of protein C and other biomarkers as predictors of mortality in a rat cecal ligation and puncture model of sepsis.

Josef G. Heuer; Ganesh R. Sharma; Bruce Gerlitz; Tonghai Zhang; Dianna L. Bailey; Chunjin Ding; David T. Berg; Douglas Perkins; Eddie J. Stephens; Kimberly C. Holmes; Renee L. Grubbs; Kelly A. Fynboe; Yun-Fei Chen; Brian W. Grinnell; Joseph A. Jakubowski

Objective:To evaluate protein C and other factors associated with the septic response as predictors of mortality in a clinically relevant animal model of sepsis. Design:Laboratory investigation. Setting:Eli Lilly and Company discovery research laboratory. Subjects:Forty female Sprague Dawley Rats weighing 245–265 g. Interventions:Polyethylene catheters were surgically implanted into the femoral vein and sepsis was induced by cecal ligation and puncture (CLP). A solution of 5% dextrose in 0.9% saline was continuously infused via femoral catheters immediately following surgery. Blood sampling was done before surgery and at 6 and 20 hrs after surgery. Rats were then monitored for survival out to 4 days. Measurements and Main Results:Blood collections were used to measure blood glucose, bacteremia, plasma protein C, D-dimer, hormones, chemokines, cytokines, and myoglobin (as a marker of organ damage). Mortality was categorized into three groups: early death (before 30 hrs post-CLP), late death (after 30 hrs post-CLP), and survivors (96 hrs post-CLP). Compared with survivors, early death rats had statistically significant differences in 30 variables indicative of severe inflammation, coagulopathy, and muscle damage including less bacterial clearance, hypoglycemia, lower plasma protein C, higher plasma D dimer, higher plasma cytokine/ chemokines, and higher plasma myoglobin concentrations. Twenty variables had a moderate to strong correlation with time of death. Receiver operator characteristic curves generated from a simple logistic regression model indicated that KC and macrophage inflammatory protein-2, rodent homologues of the human growth related oncogene CXC chemokine family, and protein C were the best predictors of mortality in this model. Conclusions:The data from this study indicate that an early decrease in protein C concentration predicts poor outcome in a rat sepsis model. The data further indicate that increases in the CXC chemokines macrophage inflammatory protein-2 and KC precede poor outcome.


Blood | 2012

Cytoprotective signaling by activated protein C requires protease activated receptor-3 in podocytes

Thati Madhusudhan; Hongjie Wang; Beate K. Straub; Elisabeth Gröne; Qianxing Zhou; Khurrum Shahzad; Sandra Müller-Krebs; Vedat Schwenger; Bruce Gerlitz; Brian W. Grinnell; Jochen Reiser; Hermann Josef Gröne; Charles T. Esmon; Peter P. Nawroth; Berend Isermann

The cytoprotective effects of activated protein C (aPC) are well established. In contrast, the receptors and signaling mechanism through which aPC conveys cytoprotection in various cell types remain incompletely defined. Thus, within the renal glomeruli, aPC preserves endothelial cells via a protease-activated receptor-1 (PAR-1) and endothelial protein C receptor-dependent mechanism. Conversely, the signaling mechanism through which aPC protects podocytes remains unknown. While exploring the latter, we identified a novel aPC/PAR-dependent cytoprotective signaling mechanism. In podocytes, aPC inhibits apoptosis through proteolytic activation of PAR-3 independent of endothelial protein C receptor. PAR-3 is not signaling competent itself as it requires aPC-induced heterodimerization with PAR-2 (human podocytes) or PAR-1 (mouse podocytes). This cytoprotective signaling mechanism depends on caveolin-1 dephosphorylation. In vivo aPC protects against lipopolysaccharide-induced podocyte injury and proteinuria. Genetic deletion of PAR-3 impairs the nephroprotective effect of aPC, demonstrating the crucial role of PAR-3 for aPC-dependent podocyte protection. This novel, aPC-mediated interaction of PARs demonstrates the plasticity and cell-specificity of cytoprotective aPC signaling. The evidence of specific, dynamic signaling complexes underlying aPC-mediated cytoprotection may allow the design of cell type specific targeted therapies.


Journal of The American Society of Nephrology | 2007

Role of Protein C in Renal Dysfunction after Polymicrobial Sepsis

Akanksha Gupta; David T. Berg; Bruce Gerlitz; Ganesh R. Sharma; Samreen K. Syed; Mark A. Richardson; George E. Sandusky; Josef G. Heuer; Elizabeth Galbreath; Brian W. Grinnell

Protein C (PC) plays an important role in vascular function, and acquired deficiency during sepsis is associated with increased mortality in both animal models and in clinical studies. This study explored the consequences of PC suppression on the kidney in a cecal ligation and puncture model of polymicrobial sepsis. This study shows that a rapid drop in PC after sepsis is strongly associated with an increase in blood urea nitrogen, renal pathology, and expression of known markers of renal injury, including neutrophil gelatinase-associated lipocalin, CXCL1, and CXCL2. The endothelial PC receptor, which is required for the anti-inflammatory and antiapoptotic activity of activated PC (APC), was significantly increased after cecal ligation and puncture as well as in the microvasculature of human kidneys after injury. Treatment of septic animals with APC reduced blood urea nitrogen, renal pathology, and chemokine expression and dramatically reduced the induction of inducible nitric oxide synthase and caspase-3 activation in the kidney. The data demonstrate a clear link between acquired PC deficiency and renal dysfunction in sepsis and suggest a compensatory upregulation of the signaling receptor. Moreover, these data suggest that APC treatment may be effective in reducing inflammatory and apoptotic insult during sepsis-induced acute renal failure.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2007

Activated Protein C Decreases Tumor Necrosis Factor–Related Apoptosis-Inducing Ligand by an EPCR- Independent Mechanism Involving Egr-1/Erk-1/2 Activation

Lee A. O’Brien; Mark A. Richardson; Sean F. Mehrbod; David T. Berg; Bruce Gerlitz; Akanksha Gupta; Brian W. Grinnell

Background—APC is an antithrombotic and antiinflammatory serine protease that plays an important role in vascular function. We report that APC can suppress the proapoptotic mediator TRAIL in human umbilical vein endothelial cells, and we have investigated the signaling mechanism. Methods and Results—APC inhibited endothelial TRAIL expression and secretion and its induction by cell activation. To explore the mechanism, we examined factors associated with TRAIL regulation and demonstrated that APC increased the level of EGR-1, a transcriptional factor known to suppress the TRAIL promoter. APC also induced a significant increase in phosphorylation of ERK-1/2, required to activate EGR-1 expression. Activation of ERK-1/2 was dependent on the protease activated receptor-1 (PAR-1), but independent of the endothelial protein C receptor (EPCR). Using siRNA, we found that the effect of APC on the EGR-1/ERK signaling required for TRAIL inhibition was dependent on the S1P1 receptor and S1P1 kinase. Conclusions—Our data suggest that APC may provide cytoprotective activity by activating the ERK pathway, which upregulates EGR-1 thereby suppressing the expression of TRAIL. Moreover, we provide evidence that APC can induce a cell signaling response through a PAR-1/S1P1-dependent but EPCR-independent mechanism.


Journal of The American Society of Nephrology | 2009

Distinct Functions of Activated Protein C Differentially Attenuate Acute Kidney Injury

Akanksha Gupta; Bruce Gerlitz; Mark A. Richardson; Christopher Bull; David T. Berg; Samreen K. Syed; Elizabeth Galbreath; Barbara A. Swanson; Bryan Edward Jones; Brian W. Grinnell

Administration of activated protein C (APC) protects from renal dysfunction, but the underlying mechanism is unknown. APC exerts both antithrombotic and cytoprotective properties, the latter via modulation of protease-activated receptor-1 (PAR-1) signaling. We generated APC variants to study the relative importance of the two functions of APC in a model of LPS-induced renal microvascular dysfunction. Compared with wild-type APC, the K193E variant exhibited impaired anticoagulant activity but retained the ability to mediate PAR-1-dependent signaling. In contrast, the L8W variant retained anticoagulant activity but lost its ability to modulate PAR-1. By administering wild-type APC or these mutants in a rat model of LPS-induced injury, we found that the PAR-1 agonism, but not the anticoagulant function of APC, reversed LPS-induced systemic hypotension. In contrast, both functions of APC played a role in reversing LPS-induced decreases in renal blood flow and volume, although the effects on PAR-1-dependent signaling were more potent. Regarding potential mechanisms for these findings, APC-mediated PAR-1 agonism suppressed LPS-induced increases in the vasoactive peptide adrenomedullin and infiltration of iNOS-positive leukocytes into renal tissue. However, the anticoagulant function of APC was responsible for suppressing LPS-induced stimulation of the proinflammatory mediators ACE-1, IL-6, and IL-18, perhaps accounting for its ability to modulate renal hemodynamics. Both variants reduced active caspase-3 and abrogated LPS-induced renal dysfunction and pathology. We conclude that although PAR-1 agonism is solely responsible for APC-mediated improvement in systemic hemodynamics, both functions of APC play distinct roles in attenuating the response to injury in the kidney.


Critical Care | 2010

Activated protein C ameliorates coagulopathy but does not influence outcome in lethal H1N1 influenza: a controlled laboratory study

Marcel Schouten; Koenraad F. van der Sluijs; Bruce Gerlitz; Brian W. Grinnell; Joris J. T. H. Roelofs; Marcel Levi; Cornelis van 't Veer; Tom van der Poll

IntroductionInfluenza accounts for 5 to 10% of community-acquired pneumonias and is a major cause of mortality. Sterile and bacterial lung injuries are associated with procoagulant and inflammatory derangements in the lungs. Activated protein C (APC) is an anticoagulant with anti-inflammatory properties that exert beneficial effects in models of lung injury. We determined the impact of lethal influenza A (H1N1) infection on systemic and pulmonary coagulation and inflammation, and the effect of recombinant mouse (rm-) APC hereon.MethodsMale C57BL/6 mice were intranasally infected with a lethal dose of a mouse adapted influenza A (H1N1) strain. Treatment with rm-APC (125 μg intraperitoneally every eight hours for a maximum of three days) or vehicle was initiated 24 hours after infection. Mice were euthanized 48 or 96 hours after infection, or observed for up to nine days.ResultsLethal H1N1 influenza resulted in systemic and pulmonary activation of coagulation, as reflected by elevated plasma and lung levels of thrombin-antithrombin complexes and fibrin degradation products. These procoagulant changes were accompanied by inhibition of the fibrinolytic response due to enhanced release of plasminogen activator inhibitor type-1. Rm-APC strongly inhibited coagulation activation in both plasma and lungs, and partially reversed the inhibition of fibrinolysis. Rm-APC temporarily reduced pulmonary viral loads, but did not impact on lung inflammation or survival.ConclusionsLethal influenza induces procoagulant and antifibrinolytic changes in the lung which can be partially prevented by rm-APC treatment.

Collaboration


Dive into the Bruce Gerlitz's collaboration.

Top Co-Authors

Avatar

Brian W. Grinnell

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akanksha Gupta

North Dakota State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge