Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bruce Jaffee is active.

Publication


Featured researches published by Bruce Jaffee.


Cell | 2007

NF-kappaB is a negative regulator of IL-1beta secretion as revealed by genetic and pharmacological inhibition of IKKbeta.

Florian R. Greten; Melek C. Arkan; Julia Bollrath; Li-Chung Hsu; Jason Goode; Cornelius Miething; Serkan Göktuna; Michael Neuenhahn; Joshua Fierer; Stephan Paxian; Nico van Rooijen; Yajun Xu; Timothy D. Ocain; Bruce Jaffee; Dirk H. Busch; Justus Duyster; Roland M. Schmid; Lars Eckmann; Michael Karin

IKKbeta-dependent NF-kappaB activation plays a key role in innate immunity and inflammation, and inhibition of IKKbeta has been considered as a likely anti-inflammatory therapy. Surprisingly, however, mice with a targeted IKKbeta deletion in myeloid cells are more susceptible to endotoxin-induced shock than control mice. Increased endotoxin susceptibility is associated with elevated plasma IL-1beta as a result of increased pro-IL-1beta processing, which was also seen upon bacterial infection. In macrophages enhanced pro-IL-1beta processing depends on caspase-1, whose activation is inhibited by NF-kappaB-dependent gene products. In neutrophils, however, IL-1beta secretion is caspase-1 independent and depends on serine proteases, whose activity is also inhibited by NF-kappaB gene products. Prolonged pharmacologic inhibition of IKKbeta also augments IL-1beta secretion upon endotoxin challenge. These results unravel an unanticipated role for IKKbeta-dependent NF-kappaB signaling in the negative control of IL-1beta production and highlight potential complications of long-term IKKbeta inhibition.


Journal of Immunology | 2006

PKC-θ-Deficient Mice Are Protected from Th1-Dependent Antigen-Induced Arthritis

Aileen M. Healy; Elena Izmailova; Michael L. Fitzgerald; Russell Walker; Maureen Hattersley; Matthew D. Silva; Elizabeth Siebert; Jennifer Terkelsen; Dominic Picarella; Michael D. Pickard; Brett LeClair; Sudeep Chandra; Bruce Jaffee

T cell effector functions contribute to the pathogenesis of rheumatoid arthritis. PKC-θ transduces the signal from the TCR through activation of transcription factors NF-κB, AP-1, and NFAT. We examined the effects of PKC-θ deficiency on two Th1-dependent models of Ag-induced arthritis and found that PKC-θ-deficient mice develop disease, but at a significantly diminished severity compared with wild-type mice. In the methylated BSA model, cellular infiltrates and articular cartilage damage were mild in the PKC-θ-deficient mice as compared with wild-type mice. Quantitation of histopathology reveals 63 and 77% reduction in overall joint destruction in two independent experiments. In the type II collagen-induced arthritis model, we observed a significant reduction in clinical scores (p < 0.01) in three independent experiments and diminished joint pathology (p < 0.005) in PKC-θ-deficient compared with wild-type littermates. Microcomputerized tomographic imaging revealed that PKC-θ deficiency also protects from bone destruction. PKC-θ-deficient CD4+ T cells show an impaired proliferative response, decreased intracellular levels of the cytokines IFN-γ, IL-2, and IL-4, and significantly diminished cell surface expression of the activation markers CD25, CD69, and CD134/OX40 on memory T cells. We demonstrate decreased T-bet expression and significantly reduced IgG1 and IgG2a anti-collagen II Ab levels in PKC-θ-deficient mice. Collectively, our results demonstrate that PKC-θ deficiency results in an attenuated response to Ag-induced arthritis, which is likely mediated by the reduced T cell proliferation, Th1/Th2 cell differentiation and T cell activation before and during disease peak.


Molecular Pharmacology | 2006

Validation of the Anti-Inflammatory Properties of Small-Molecule IκB Kinase (IKK)-2 Inhibitors by Comparison with Adenoviral-Mediated Delivery of Dominant-Negative IKK1 and IKK2 in Human Airways Smooth Muscle

Matthew C. Catley; Maria B. Sukkar; K. Fan Chung; Bruce Jaffee; Sha-Mei Liao; Anthony J. Coyle; El-Bdaoui Haddad; Peter J. Barnes; Robert Newton

Asthma and chronic obstructive pulmonary disease (COPD) are characterized by chronic airway inflammation. However, because patients with COPD and certain patients with asthma show little or no therapeutic benefit from existing corticosteroid therapies, there is an urgent need for novel anti-inflammatory strategies. The transcription factor nuclear factor-κB (NF-κB) is central to inflammation and is necessary for the expression of numerous inflammatory genes. Proinflammatory cytokines, including interleukin (IL)-1β and tumor necrosis factor (TNF)-α, activate the IκB kinase complex (IKK) to promote the degradation of inhibitory IκB proteins and activate NF-κB. This pathway and, in particular, the main IκB kinase, IKK2, are now considered prime targets for novel anti-inflammatory drugs. Therefore, we have used adenoviral overexpression to demonstrate NF-κB and IKK2 dependence of key inflammatory genes, including intercellular adhesion molecule (ICAM)-1, cyclooxygenase-2, IL-6, IL-8, granulocyte macrophage-colony-stimulating factor (GM-CSF), regulated on activation normal T cell expressed and secreted (RANTES), monocyte chemotactic protein-1 (MCP-1), growth-regulated oncogene-α (GROα), neutrophil-activating protein-2 (NAP-2), and epithelial neutrophil activating peptide 78 (ENA-78) in primary human airways smooth muscle cells. Because this cell type is central to the pathogenesis of airway inflammatory diseases, these data predict a beneficial effect of IKK2 inhibition. These validated outputs were therefore used to evaluate the novel IKK inhibitors N-(6-chloro-9H-β-carbolin-8-yl) nicotinamide (PS-1145) and N-(6-chloro-7-methoxy-9H-β-carbolin-8-yl)-2-methyl-nicotinamide (ML120B) on IL-1β and TNFα-induced expression, and this was compared with the corticosteroid dexamethasone. As observed above, ICAM-1, IL-6, IL-8, GM-CSF, RANTES, MCP-1, GROα, NAP-2, and ENA-78 expression was reduced by the IKK inhibitors. Furthermore, this inhibition was either as effective, or for ICAM-1, MCP-1, GROα, and NAP-2, more effective, than a maximally effective concentration of dexamethasone. We therefore suggest that IKK inhibitors may be of considerable benefit in inflammatory airways diseases, particularly in COPD or severe asthma, in which corticosteroids are ineffective.


Autoimmunity | 2006

Mice deficient in PKC theta demonstrate impaired in vivo T cell activation and protection from T cell-mediated inflammatory diseases.

Karen Anderson; Michael Fitzgerald; Michelle DuPont; Tao Wang; Nancy Paz; Marion Dorsch; Aileen Healy; Yajun Xu; Tim Ocain; Lisa R. Schopf; Bruce Jaffee; Dominic Picarella

In the present study we have characterized T cell-driven immune function in mice that are genetically deficient in PKC theta. In response to simple immunologic stimulation invoked by in vivo T cell receptor (TCR) cross-linking, these mice showed significantly depressed plasma cytokine levels for IL-2, IL-4, IFNγ, and TNFα compared to wild-type (WT) mice. In parallel, spleen mRNA levels for these cytokines were reduced, and NF-κB activation was also reduced in PKC theta knockouts (KO). Injection of allogeneic cells into the footpad of PKC theta deficient mice provoked a significantly diminished local T cell response compared to WT mice similarly challenged. Unlike comparable cells from wild type mice, CD45RBhi T cells harvested from PKC theta deficient mice failed to induce colitis in the SCID-CD45RB cell transfer model of IBD. In another T cell-dependent model of inflammatory disease, PKC theta deficient animals developed far less severe neurologic signs and reduced spinal cord inflammatory cell infiltrate compared to WT controls in the MOG-induced EAE model. A fundamental role for PKC theta in T cell activation and in the development of T cell-mediated inflammatory diseases is indicated by these results.


Journal of Biological Chemistry | 2005

Participation of Rip2 in lipopolysaccharide signaling is independent of its kinase activity.

Chafen Lu; Anlai Wang; Marion Dorsch; Jane Tian; Kumiko Nagashima; Anthony J. Coyle; Bruce Jaffee; Timothy D. Ocain; Yajun Xu

Rip2 (Rick, Cardiak, CCK2, and CARD3) is a serine/threonine kinase containing a caspase recruitment domain (CARD) at the C terminus. Previous reports have shown that Rip2 is involved in multiple receptor signaling pathways that are important for innate and adaptive immune responses. However, it is not known whether Rip2 kinase activity is required for its function. Here we confirm that Rip2 participates in lipopolysaccharide (LPS)/Toll-like receptor (TLR4) signaling and demonstrate that its kinase activity is not required. Upon LPS stimulation, Rip2 was transiently recruited to the TLR4 receptor complex and associated with key TLR signaling mediators IRAK1 and TRAF6. Furthermore, Rip2 kinase activity was induced by LPS treatment. These data indicate that Rip2 is directly involved in the LPS/TLR4 signaling. Whereas macrophages from Rip2-deficient mice showed impaired NF-κB and p38 mitogen-activated protein kinase activation and reduced cytokine production in response to LPS stimulation, LPS signaling was intact in macrophages from mice that express Rip2 kinase-dead mutant. These results demonstrate that Rip2-mediated LPS signaling is independent of its kinase activity. Our findings strongly suggest that Rip2 functions as an adaptor molecule in transducing signals from immune receptors.


Molecular Imaging | 2004

Quantitative analysis of micro-CT imaging and histopathological signatures of experimental arthritis in rats.

Matthew D. Silva; Anneli Savinainen; Rasesh D. Kapadia; Jason Ruan; Elizabeth Siebert; Nicole Avitahl; Rebecca Mosher; Karen Anderson; Bruce Jaffee; Lisa R. Schopf; Sudeep Chandra

Micro-computed tomographic (micro-CT) imaging provides a unique opportunity to capture 3-D architectural information in bone samples. In this study of pathological joint changes in a rat model of adjuvant-induced arthritis (AA), quantitative analysis of bone volume and roughness were performed by micro-CT imaging and compared with histopathology methods and paw swelling measurement. Micro-CT imaging of excised rat hind paws (n = 10) stored in formalin consisted of approximately 600 30-mum slices acquired on a 512 x 512 image matrix with isotropic resolution. Following imaging, the joints were scored from H&E stained sections for cartilage/bone erosion, pannus development, inflammation, and synovial hyperplasia. From micro-CT images, quantitative analysis of absolute bone volumes and bone roughness was performed. Bone erosion in the rat AA model is substantial, leading to a significant decline in tarsal volume (27%). The result of the custom bone roughness measurement indicated a 55% increase in surface roughness. Histological and paw volume analyses also demonstrated severe arthritic disease as compared to controls. Statistical analyses indicate correlations among bone volume, roughness, histology, and paw volume. These data demonstrate that the destructive progression of disease in a rat AA model can be quantified using 3-D micro-CT image analysis, which allows assessment of arthritic disease status and efficacy of experimental therapeutic agents.


Nature Chemical Biology | 2016

Small-molecule factor D inhibitors targeting the alternative complement pathway

Jürgen Maibaum; Sha-Mei Liao; Anna Vulpetti; Nils Ostermann; Stefan Andreas Randl; Simon Rüdisser; Edwige Liliane Jeanne Lorthiois; Paul Erbel; Bernd Kinzel; Fabrice Kolb; Samuel Barbieri; Julia Wagner; Corinne Durand; Kamal Fettis; Solene Dussauge; Nicola Hughes; Omar Delgado; Ulrich Hommel; Ty Gould; Aengus Mac Sweeney; Bernd Gerhartz; Frederic Cumin; Stefanie Flohr; Anna Schubart; Bruce Jaffee; Richard Harrison; Antonio M. Risitano; Jörg Eder; Karen Anderson

Complement is a key component of the innate immune system, recognizing pathogens and promoting their elimination. Complement component 3 (C3) is the central component of the system. Activation of C3 can be initiated by three distinct routes-the classical, the lectin and the alternative pathways-with the alternative pathway also acting as an amplification loop for the other two pathways. The protease factor D (FD) is essential for this amplification process, which, when dysregulated, predisposes individuals to diverse disorders including age-related macular degeneration and paroxysmal nocturnal hemoglobinuria (PNH). Here we describe the identification of potent and selective small-molecule inhibitors of FD. These inhibitors efficiently block alternative pathway (AP) activation and prevent both C3 deposition onto, and lysis of, PNH erythrocytes. Their oral administration inhibited lipopolysaccharide-induced AP activation in FD-humanized mice. These data demonstrate the feasibility of inhibiting the AP with small-molecule antagonists and support the development of FD inhibitors for the treatment of complement-mediated diseases.


Journal of Biological Chemistry | 2011

Pharmacologic Uncoupling of Angiogenesis and Inflammation during Initiation of Pathological Corneal Neovascularization

Jeremy M. Sivak; Allison C. Ostriker; Amber Woolfenden; John T. Demirs; Rosemarie Cepeda; Debby Long; Karen S. Anderson; Bruce Jaffee

Background: The mechanism initiating pathological corneal neovascularization (CoNV) remains unclear. Results: After injury, substantial CoNV occurs during an initial, VEGFR-2-dependent phase, prior to influence from inflammatory cells. Conclusion: Pathological CoNV can be pharmacologically uncoupled from inflammatory cell recruitment and may be coordinated by VEGF from repair epithelial cells. Significance: This work reveals a window in which angiogenesis and inflammation can be selectively targeted during injury repair. Pathological neovascularization occurs when a balance of pro- and anti-angiogenic factors is disrupted, accompanied by an amplifying inflammatory cascade. However, the interdependence of these responses and the mechanism triggering the initial angiogenic switch have remained unclear. We present data from an epithelial debridement model of corneal neovascularization describing an initial 3-day period when a substantial component of neovascular growth occurs. Administration of selective inhibitors shows that this initial growth requires signaling through VEGFR-2 (vascular endothelial growth factor receptor-2), independent of the accompanying inflammatory response. Instead, increased VEGF production is found prominently in repair epithelial cells and is increased prior to recruitment of neutrophil/granulocytes and macrophage/monocytes. Consequently, early granulocyte and monocyte depletion has little effect on corneal neovascularization outgrowth. These data indicate that it is possible to pharmacologically uncouple these mechanisms during early injury-driven neovascularization in the cornea and suggest that initial tissue responses are coordinated by repair epithelial cells.


Bioorganic & Medicinal Chemistry Letters | 2008

Selective cell adhesion inhibitors: Barbituric acid based α4β7—MAdCAM inhibitors

Geraldine C. B. Harriman; Matthias Brewer; Robert Bennett; Cyrille Kuhn; Marc Bazin; Greg Larosa; Paul Skerker; Nancy Cochran; Debra Gallant; Deborah F. Baxter; Dominic Picarella; Bruce Jaffee; Jay R. Luly; Michael J. Briskin

A novel series of barbituric acid derivatives were identified as selective inhibitors of alpha4beta7 MAdCAM (mucosal addressin cell adhesion molecule-1) interactions via a high throughput screening exercise. These inhibitors were optimized to submicromolar potencies in whole cell adhesion assays, retaining their selectivity over alpha4beta1 VCAM.


Journal of Medicinal Chemistry | 2015

Discovery of Oral VEGFR-2 Inhibitors with Prolonged Ocular Retention That Are Efficacious in Models of Wet Age-Related Macular Degeneration

Erik Meredith; Nello Mainolfi; Stephen Poor; Yubin Qiu; Karl Miranda; James C. Powers; Donglei Liu; Fupeng Ma; Catherine Solovay; Chang Rao; Leland Johnson; Nan Ji; Gerald Artman; Leo Hardegger; Shawn Hanks; Siyuan Shen; Amber Woolfenden; Elizabeth Fassbender; Jeremy M. Sivak; Yiqin Zhang; Debby Long; Rosemarie Cepeda; Fang Liu; Vinayak Hosagrahara; Wendy Lee; Peter Tarsa; Karen S. Anderson; Jason Matthew Elliott; Bruce Jaffee

The benefit of intravitreal anti-VEGF therapy in treating wet age-related macular degeneration (AMD) is well established. Identification of VEGFR-2 inhibitors with optimal ADME properties for an ocular indication provides opportunities for dosing routes beyond intravitreal injection. We employed a high-throughput in vivo screening strategy with rodent models of choroidal neovascularization and iterative compound design to identify VEGFR-2 inhibitors with potential to benefit wet AMD patients. These compounds demonstrate preferential ocular tissue distribution and efficacy after oral administration while minimizing systemic exposure.

Collaboration


Dive into the Bruce Jaffee's collaboration.

Top Co-Authors

Avatar

Yajun Xu

Millennium Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar

Timothy D. Ocain

Millennium Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar

Lisa R. Schopf

Millennium Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elizabeth Siebert

Millennium Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthew D. Silva

Millennium Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sudeep Chandra

Millennium Pharmaceuticals

View shared research outputs
Researchain Logo
Decentralizing Knowledge