Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bruce May is active.

Publication


Featured researches published by Bruce May.


Nucleic Acids Research | 2014

The Reactome pathway knowledgebase

Antonio Fabregat; Konstantinos Sidiropoulos; Phani Garapati; Marc Gillespie; Kerstin Hausmann; Robin Haw; Bijay Jassal; Steven Jupe; Florian Korninger; Sheldon J. McKay; Lisa Matthews; Bruce May; Marija Milacic; Karen Rothfels; Veronica Shamovsky; Marissa Webber; Joel Weiser; Mark A. Williams; Guanming Wu; Lincoln Stein; Henning Hermjakob; Peter D'Eustachio

The Reactome Knowledgebase (www.reactome.org) provides molecular details of signal transduction, transport, DNA replication, metabolism and other cellular processes as an ordered network of molecular transformations—an extended version of a classic metabolic map, in a single consistent data model. Reactome functions both as an archive of biological processes and as a tool for discovering unexpected functional relationships in data such as gene expression pattern surveys or somatic mutation catalogues from tumour cells. Over the last two years we redeveloped major components of the Reactome web interface to improve usability, responsiveness and data visualization. A new pathway diagram viewer provides a faster, clearer interface and smooth zooming from the entire reaction network to the details of individual reactions. Tool performance for analysis of user datasets has been substantially improved, now generating detailed results for genome-wide expression datasets within seconds. The analysis module can now be accessed through a RESTFul interface, facilitating its inclusion in third party applications. A new overview module allows the visualization of analysis results on a genome-wide Reactome pathway hierarchy using a single screen page. The search interface now provides auto-completion as well as a faceted search to narrow result lists efficiently.


Nature | 2004

Role of transposable elements in heterochromatin and epigenetic control

Zachary Lippman; Anne Valérie Gendrel; Michael Black; Matthew W. Vaughn; Neilay Dedhia; W. Richard McCombie; Kimberly Lavine; Vivek Mittal; Bruce May; Kristin B. Kasschau; James C. Carrington; R. W. Doerge; Vincent Colot; Robert A. Martienssen

Heterochromatin has been defined as deeply staining chromosomal material that remains condensed in interphase, whereas euchromatin undergoes de-condensation. Heterochromatin is found near centromeres and telomeres, but interstitial sites of heterochromatin (knobs) are common in plant genomes and were first described in maize. These regions are repetitive and late-replicating. In Drosophila, heterochromatin influences gene expression, a heterochromatin phenomenon called position effect variegation. Similarities between position effect variegation in Drosophila and gene silencing in maize mediated by “controlling elements” (that is, transposable elements) led in part to the proposal that heterochromatin is composed of transposable elements, and that such elements scattered throughout the genome might regulate development. Using microarray analysis, we show that heterochromatin in Arabidopsis is determined by transposable elements and related tandem repeats, under the control of the chromatin remodelling ATPase DDM1 (Decrease in DNA Methylation 1). Small interfering RNAs (siRNAs) correspond to these sequences, suggesting a role in guiding DDM1. We also show that transposable elements can regulate genes epigenetically, but only when inserted within or very close to them. This probably accounts for the regulation by DDM1 and the DNA methyltransferase MET1 of the euchromatic, imprinted gene FWA, as its promoter is provided by transposable-element-derived tandem repeats that are associated with siRNAs.


Nucleic Acids Research | 2011

Reactome: a database of reactions, pathways and biological processes

David Croft; Gavin O’Kelly; Guanming Wu; Robin Haw; Marc Gillespie; Lisa Matthews; Michael Caudy; Phani Garapati; Gopal Gopinath; Bijay Jassal; Steven Jupe; Irina Kalatskaya; Shahana Mahajan; Bruce May; Nelson Ndegwa; Esther Schmidt; Veronica Shamovsky; Christina K. Yung; Ewan Birney; Henning Hermjakob; Peter D’Eustachio; Lincoln Stein

Reactome (http://www.reactome.org) is a collaboration among groups at the Ontario Institute for Cancer Research, Cold Spring Harbor Laboratory, New York University School of Medicine and The European Bioinformatics Institute, to develop an open source curated bioinformatics database of human pathways and reactions. Recently, we developed a new web site with improved tools for pathway browsing and data analysis. The Pathway Browser is an Systems Biology Graphical Notation (SBGN)-based visualization system that supports zooming, scrolling and event highlighting. It exploits PSIQUIC web services to overlay our curated pathways with molecular interaction data from the Reactome Functional Interaction Network and external interaction databases such as IntAct, BioGRID, ChEMBL, iRefIndex, MINT and STRING. Our Pathway and Expression Analysis tools enable ID mapping, pathway assignment and overrepresentation analysis of user-supplied data sets. To support pathway annotation and analysis in other species, we continue to make orthology-based inferences of pathways in non-human species, applying Ensembl Compara to identify orthologs of curated human proteins in each of 20 other species. The resulting inferred pathway sets can be browsed and analyzed with our Species Comparison tool. Collaborations are also underway to create manually curated data sets on the Reactome framework for chicken, Drosophila and rice.


Nucleic Acids Research | 2009

Reactome knowledgebase of human biological pathways and processes.

Lisa Matthews; Gopal Gopinath; Marc Gillespie; Michael Caudy; David Croft; Bernard de Bono; Phani Garapati; Jill Hemish; Henning Hermjakob; Bijay Jassal; Alex Kanapin; Suzanna E. Lewis; Shahana Mahajan; Bruce May; Esther Schmidt; Imre Vastrik; Guanming Wu; Ewan Birney; Lincoln Stein; Peter D’Eustachio

Reactome (http://www.reactome.org) is an expert-authored, peer-reviewed knowledgebase of human reactions and pathways that functions as a data mining resource and electronic textbook. Its current release includes 2975 human proteins, 2907 reactions and 4455 literature citations. A new entity-level pathway viewer and improved search and data mining tools facilitate searching and visualizing pathway data and the analysis of user-supplied high-throughput data sets. Reactome has increased its utility to the model organism communities with improved orthology prediction methods allowing pathway inference for 22 species and through collaborations to create manually curated Reactome pathway datasets for species including Arabidopsis, Oryza sativa (rice), Drosophila and Gallus gallus (chicken). Reactomes data content and software can all be freely used and redistributed under open source terms.


PLOS Biology | 2003

Distinct Mechanisms Determine Transposon Inheritance and Methylation via Small Interfering RNA and Histone Modification

Zachary Lippman; Bruce May; C. Yordan; Tatjana Singer; Robert A. Martienssen

Heritable, but reversible, changes in transposable element activity were first observed in maize by Barbara McClintock in the 1950s. More recently, transposon silencing has been associated with DNA methylation, histone H3 lysine-9 methylation (H3mK9), and RNA interference (RNAi). Using a genetic approach, we have investigated the role of these modifications in the epigenetic regulation and inheritance of six Arabidopsis transposons. Silencing of most of the transposons is relieved in DNA methyltransferase (met1), chromatin remodeling ATPase (ddm1), and histone modification (sil1) mutants. In contrast, only a small subset of the transposons require the H3mK9 methyltransferase KRYPTONITE, the RNAi gene ARGONAUTE1, and the CXG methyltransferase CHROMOMETHYLASE3. In crosses to wild-type plants, epigenetic inheritance of active transposons varied from mutant to mutant, indicating these genes differ in their ability to silence transposons. According to their pattern of transposon regulation, the mutants can be divided into two groups, which suggests that there are distinct, but interacting, complexes or pathways involved in transposon silencing. Furthermore, different transposons tend to be susceptible to different forms of epigenetic regulation.


PLOS Genetics | 2005

Differential Regulation of Strand-Specific Transcripts from Arabidopsis Centromeric Satellite Repeats

Bruce May; Zachary Lippman; Yuda Fang; David L. Spector; Robert A. Martienssen

Centromeres interact with the spindle apparatus to enable chromosome disjunction and typically contain thousands of tandemly arranged satellite repeats interspersed with retrotransposons. While their role has been obscure, centromeric repeats are epigenetically modified and centromere specification has a strong epigenetic component. In the yeast Schizosaccharomyces pombe, long heterochromatic repeats are transcribed and contribute to centromere function via RNA interference (RNAi). In the higher plant Arabidopsis thaliana, as in mammalian cells, centromeric satellite repeats are short (180 base pairs), are found in thousands of tandem copies, and are methylated. We have found transcripts from both strands of canonical, bulk Arabidopsis repeats. At least one subfamily of 180–base pair repeats is transcribed from only one strand and regulated by RNAi and histone modification. A second subfamily of repeats is also silenced, but silencing is lost on both strands in mutants in the CpG DNA methyltransferase MET1, the histone deacetylase HDA6/SIL1, or the chromatin remodeling ATPase DDM1. This regulation is due to transcription from Athila2 retrotransposons, which integrate in both orientations relative to the repeats, and differs between strains of Arabidopsis. Silencing lost in met1 or hda6 is reestablished in backcrosses to wild-type, but silencing lost in RNAi mutants and ddm1 is not. Twenty-four–nucleotide small interfering RNAs from centromeric repeats are retained in met1 and hda6, but not in ddm1, and may have a role in this epigenetic inheritance. Histone H3 lysine-9 dimethylation is associated with both classes of repeats. We propose roles for transcribed repeats in the epigenetic inheritance and evolution of centromeres.


Cell (Cambridge) | 2000

The complete sequence of a heterochromatic island from a higher eukaryote

W. R. McCombie; M. de la Bastide; K. Habermann; Laurence D. Parnell; Neilay Dedhia; L. Gnoj; K. Schutz; E. Huang; Lori Spiegel; C. Yordan; M. Sehkon; James Augustus Henry Murray; P. Sheet; Matt Cordes; J. Threideh; T. Stoneking; Joelle Kalicki; Tina Graves; G. Harmon; Jennifer B Edwards; Phil Latreille; Laura Courtney; J. Cloud; A. Abbott; K. Scott; D. Johnson; Patrick Minx; David R. Bentley; B. Fulton; N. Miller

Heterochromatin, constitutively condensed chromosomal material, is widespread among eukaryotes but incompletely characterized at the nucleotide level. We have sequenced and analyzed 2.1 megabases (Mb) of Arabidopsis thaliana chromosome 4 that includes 0.5-0.7 Mb of isolated heterochromatin that resembles the chromosomal knobs described by Barbara McClintock in maize. This isolated region has a low density of expressed genes, low levels of recombination and a low incidence of genetrap insertion. Satellite repeats were absent, but tandem arrays of long repeats and many transposons were found. Methylation of these sequences was dependent on chromatin remodeling. Clustered repeats were associated with condensed chromosomal domains elsewhere. The complete sequence of a heterochromatic island provides an opportunity to study sequence determinants of chromosome condensation.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Maize-targeted mutagenesis: A knockout resource for maize

Bruce May; Hong Liu; Erik Vollbrecht; Lynn Senior; Pablo D. Rabinowicz; Donna Roh; Xiaokang Pan; Lincoln Stein; Michael Freeling; Danny Alexander; Robert A. Martienssen

We describe an efficient system for site-selected transposon mutagenesis in maize. A total of 43,776 F1 plants were generated by using Robertsons Mutator (Mu) pollen parents and self-pollinated to establish a library of transposon-mutagenized seed. The frequency of new seed mutants was between 10–4 and 10–5 per F1 plant. As a service to the maize community, maize-targeted mutagenesis selects insertions in genes of interest from this library by using the PCR. Pedigree, knockout, sequence, phenotype, and other information is stored in a powerful interactive database (maize-targeted mutagenesis database) that enables analysis of the entire population and the handling of knockout requests. By inhibiting Mu activity in most F1 plants, we sought to reduce somatic insertions that may cause false positives selected from pooled tissue. By monitoring the remaining Mu activity in the F2, however, we demonstrate that seed phenotypes depend on it, and false positives occur in lines that appear to lack it. We conclude that more than half of all mutations arising in this population are suppressed on losing Mu activity. These results have implications for epigenetic models of inbreeding and for functional genomics.


Plant Journal | 2008

Genome‐wide transposon tagging reveals location‐dependent effects on transcription and chromatin organization in Arabidopsis

Faye M. Rosin; Naohide Watanabe; Jean-Luc Cacas; Naohiro Kato; Juana M. Arroyo; Yuda Fang; Bruce May; Matthew W. Vaughn; Joseph Simorowski; Umamaheswari Ramu; Richard McCombie; David L. Spector; Robert A. Martienssen; Eric Lam

The interphase nucleus exists as a highly dynamic system, the physical properties of which have functional importance in gene regulation. Not only can gene expression be influenced by the local sequence context, but also by the architecture of the nucleus in three-dimensions (3D), and by the interactions between these levels via chromatin modifications. A challenging task is to resolve the complex interplay between sequence- and genome structure-based control mechanisms. Here, we created a collection of 277 Arabidopsis lines that allow the visual tracking of individual loci in living plants while comparing gene expression potential at these locations, via an identical reporter cassette. Our studies revealed regional gene silencing near a heterochromatin island, via DNA methylation, that is correlated with mobility constraint and nucleolar association. We also found an example of nucleolar association that does not correlate with gene suppression, suggesting that distinct mechanisms exist that can mediate interactions between chromatin and the nucleolus. These studies demonstrate the utility of this novel resource in unifying structural and functional studies towards a more comprehensive model of how global chromatin organization may coordinate gene expression over large scales.


Critical Reviews in Plant Sciences | 2003

Transposon Mutagenesis in the Study of Plant Development

Bruce May; Robert A. Martienssen

Transposon mutagenesis has provided one of the first and most important routes to gene identification and characterization. In the 17 years since the bz1 gene was first tagged with Activator (Ac), more than 60 genes involved in plant development have been cloned using elements such as Supressor-mutator (Spm) and Mutator (Mu) from maize and Tag1 from Arabidopsis. The advantages of transposon-induced alleles in the study of developmental processes go beyond cloning to include sector analysis, generation of new alleles, and conditional expression based on suppression. The laborious technique of directed tagging that led to many of these successes is now being supplanted by systematic projects to produce large collections of transposon insertions that are precharacterized using PCR-based methods and publicly accessible for both forward and reverse genetics. Of the tens of thousands of new genes postulated to exist in Arabidopsis and other species, most are turning out to have no obvious phenotypic effect. The challenge for functional genomics is now to elucidate the apparently subtle actions of genes at a rate commensurate with their discovery. Referee: Dr. Paul Chomet, Monsanto Co., 62 Maritime Dr., Mystic, CT 06355

Collaboration


Dive into the Bruce May's collaboration.

Top Co-Authors

Avatar

Robert A. Martienssen

Cold Spring Harbor Laboratory

View shared research outputs
Top Co-Authors

Avatar

Lincoln Stein

Ontario Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bijay Jassal

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guanming Wu

Ontario Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zachary Lippman

Cold Spring Harbor Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge