Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bruce R. Conklin is active.

Publication


Featured researches published by Bruce R. Conklin.


Nature Protocols | 2007

Integration of biological networks and gene expression data using Cytoscape

Melissa S Cline; Michael Smoot; Ethan Cerami; Allan Kuchinsky; Nerius Landys; Christopher T. Workman; Rowan H. Christmas; Iliana Avila-Campilo; Michael L. Creech; Benjamin E. Gross; Kristina Hanspers; Ruth Isserlin; R. Kelley; Sarah Killcoyne; Samad Lotia; Steven Maere; John H. Morris; Keiichiro Ono; Vuk Pavlovic; Alexander R. Pico; Aditya Vailaya; Peng-Liang Wang; Annette Adler; Bruce R. Conklin; Leroy Hood; Martin Kuiper; Chris Sander; Ilya Schmulevich; Benno Schwikowski; Guy Warner

Cytoscape is a free software package for visualizing, modeling and analyzing molecular and genetic interaction networks. This protocol explains how to use Cytoscape to analyze the results of mRNA expression profiling, and other functional genomics and proteomics experiments, in the context of an interaction network obtained for genes of interest. Five major steps are described: (i) obtaining a gene or protein network, (ii) displaying the network using layout algorithms, (iii) integrating with gene expression and other functional attributes, (iv) identifying putative complexes and functional modules and (v) identifying enriched Gene Ontology annotations in the network. These steps provide a broad sample of the types of analyses performed by Cytoscape.


Genome Biology | 2003

MAPPFinder: using Gene Ontology and GenMAPP to create a global gene-expression profile from microarray data

Scott W. Doniger; Nathan Salomonis; Kam D. Dahlquist; Karen Vranizan; Steven C. Lawlor; Bruce R. Conklin

MAPPFinder is a tool that creates a global gene-expression profile across all areas of biology by integrating the annotations of the Gene Ontology (GO) Project with the free software package GenMAPP http://www.GenMAPP.org. The results are displayed in a searchable browser, allowing the user to rapidly identify GO terms with over-represented numbers of gene-expression changes. Clicking on GO terms generates GenMAPP graphical files where gene relationships can be explored, annotated, and files can be freely exchanged.


Cell Stem Cell | 2008

MicroRNA Regulation of Cell Lineages in Mouse and Human Embryonic Stem Cells

Kathryn N. Ivey; Alecia N. Muth; Joshua Arnold; Frank W. King; Ru-Fang Yeh; Jason E. Fish; Edward C. Hsiao; Robert J. Schwartz; Bruce R. Conklin; Harold S. Bernstein; Deepak Srivastava

Cell fate decisions of pluripotent embryonic stem (ES) cells are dictated by activation and repression of lineage-specific genes. Numerous signaling and transcriptional networks progressively narrow and specify the potential of ES cells. Whether specific microRNAs help refine and limit gene expression and, thereby, could be used to manipulate ES cell differentiation has largely been unexplored. Here, we show that two serum response factor (SRF)-dependent muscle-specific microRNAs, miR-1 and miR-133, promote mesoderm formation from ES cells but have opposing functions during further differentiation into cardiac muscle progenitors. Furthermore, miR-1 and miR-133 were potent repressors of nonmuscle gene expression and cell fate during mouse and human ES cell differentiation. miR-1s effects were in part mediated by translational repression of the Notch ligand Delta-like 1 (Dll-1). Our findings indicate that muscle-specific miRNAs reinforce the silencing of nonmuscle genes during cell lineage commitment and suggest that miRNAs may have general utility in regulating cell-fate decisions from pluripotent ES cells.


PLOS Biology | 2008

WikiPathways: pathway editing for the people

Alexander R. Pico; Thomas Kelder; Martijn P. van Iersel; Kristina Hanspers; Bruce R. Conklin; Chris T. Evelo

WikiPathways provides a collaborative platform for creating, updating, and sharing pathway diagrams and serves as an example of content curation by the biology community.


Nucleic Acids Research | 2012

WikiPathways: building research communities on biological pathways

Thomas Kelder; Martijn P. van Iersel; Kristina Hanspers; Martina Kutmon; Bruce R. Conklin; Chris T. Evelo; Alexander R. Pico

Here, we describe the development of WikiPathways (http://www.wikipathways.org), a public wiki for pathway curation, since it was first published in 2008. New features are discussed, as well as developments in the community of contributors. New features include a zoomable pathway viewer, support for pathway ontology annotations, the ability to mark pathways as private for a limited time and the availability of stable hyperlinks to pathways and the elements therein. WikiPathways content is freely available in a variety of formats such as the BioPAX standard, and the content is increasingly adopted by external databases and tools, including Wikipedia. A recent development is the use of WikiPathways as a staging ground for centrally curated databases such as Reactome. WikiPathways is seeing steady growth in the number of users, page views and edits for each pathway. To assess whether the community curation experiment can be considered successful, here we analyze the relation between use and contribution, which gives results in line with other wiki projects. The novel use of pathway pages as supplementary material to publications, as well as the addition of tailored content for research domains, is expected to stimulate growth further.


BMC Bioinformatics | 2008

Presenting and exploring biological pathways with PathVisio

Martijn P. van Iersel; Thomas Kelder; Alexander R. Pico; Kristina Hanspers; Susan L. Coort; Bruce R. Conklin; Chris T. Evelo

BackgroundBiological pathways are a useful abstraction of biological concepts, and software tools to deal with pathway diagrams can help biological research. PathVisio is a new visualization tool for biological pathways that mimics the popular GenMAPP tool with a completely new Java implementation that allows better integration with other open source projects. The GenMAPP MAPP file format is replaced by GPML, a new XML file format that provides seamless exchange of graphical pathway information among multiple programs.ResultsPathVisio can be combined with other bioinformatics tools to open up three possible uses: visual compilation of biological knowledge, interpretation of high-throughput expression datasets, and computational augmentation of pathways with interaction information. PathVisio is open source software and available at http://www.pathvisio.org.ConclusionPathVisio is a graphical editor for biological pathways, with flexibility and ease of use as primary goals.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Canonical Wnt signaling is a positive regulator of mammalian cardiac progenitors

Chulan Kwon; Joshua Arnold; Edward C. Hsiao; Makoto M. Taketo; Bruce R. Conklin; Deepak Srivastava

Guiding multipotent cells into distinct lineages and controlling their expansion remain fundamental challenges in developmental and stem cell biology. Members of the Wnt pathway control many pivotal embryonic events, often promoting self-renewal or expansion of progenitor cells. In contrast, canonical Wnt ligands are thought to negatively regulate cardiomyogenesis in several species. However, the cell-autonomous role of canonical Wnt signaling within precardiac mesoderm, through its obligatory transcriptional mediator, β-catenin, is unknown. Using tissue-specific in vivo genetic manipulation, we found that β-catenin is required for development of cardiac progenitors and is a positive regulator of proliferative expansion of such progenitor cells. At discrete windows of development in embryonic stem cells, activation of canonical Wnt signaling promoted expansion of cardiac progenitors after initial commitment and was required for cardiac differentiation. Together, these data provide in vivo and in vitro evidence that canonical Wnt signaling promotes the expansion of cardiac progenitors and differentiation of cardiomyocytes.


BMC Bioinformatics | 2007

GenMAPP 2: new features and resources for pathway analysis

Nathan Salomonis; Kristina Hanspers; Alexander C. Zambon; Karen Vranizan; Steven C. Lawlor; Kam D. Dahlquist; Scott W. Doniger; Joshua M. Stuart; Bruce R. Conklin; Alexander R. Pico

BackgroundMicroarray technologies have evolved rapidly, enabling biologists to quantify genome-wide levels of gene expression, alternative splicing, and sequence variations for a variety of species. Analyzing and displaying these data present a significant challenge. Pathway-based approaches for analyzing microarray data have proven useful for presenting data and for generating testable hypotheses.ResultsTo address the growing needs of the microarray community we have released version 2 of Gene Map Annotator and Pathway Profiler (GenMAPP), a new GenMAPP database schema, and integrated resources for pathway analysis. We have redesigned the GenMAPP database to support multiple gene annotations and species as well as custom species database creation for a potentially unlimited number of species. We have expanded our pathway resources by utilizing homology information to translate pathway content between species and extending existing pathways with data derived from conserved protein interactions and coexpression. We have implemented a new mode of data visualization to support analysis of complex data, including time-course, single nucleotide polymorphism (SNP), and splicing. GenMAPP version 2 also offers innovative ways to display and share data by incorporating HTML export of analyses for entire sets of pathways as organized web pages.ConclusionGenMAPP version 2 provides a means to rapidly interrogate complex experimental data for pathway-level changes in a diverse range of organisms.


Disease Models & Mechanisms | 2012

Model for long QT syndrome type 2 using human iPS cells demonstrates arrhythmogenic characteristics in cell culture

Anna Lahti; Ville J. Kujala; Hugh Chapman; Ari-Pekka Koivisto; Mari Pekkanen-Mattila; Erja Kerkelä; Jari Hyttinen; Kimmo Kontula; Heikki Swan; Bruce R. Conklin; Shinya Yamanaka; Olli Silvennoinen; Katriina Aalto-Setälä

SUMMARY Long QT syndrome (LQTS) is caused by functional alterations in cardiac ion channels and is associated with prolonged cardiac repolarization time and increased risk of ventricular arrhythmias. Inherited type 2 LQTS (LQT2) and drug-induced LQTS both result from altered function of the hERG channel. We investigated whether the electrophysiological characteristics of LQT2 can be recapitulated in vitro using induced pluripotent stem cell (iPSC) technology. Spontaneously beating cardiomyocytes were differentiated from two iPSC lines derived from an individual with LQT2 carrying the R176W mutation in the KCNH2 (HERG) gene. The individual had been asymptomatic except for occasional palpitations, but his sister and father had died suddenly at an early age. Electrophysiological properties of LQT2-specific cardiomyocytes were studied using microelectrode array and patch-clamp, and were compared with those of cardiomyocytes derived from control cells. The action potential duration of LQT2-specific cardiomyocytes was significantly longer than that of control cardiomyocytes, and the rapid delayed potassium channel (IKr) density of the LQT2 cardiomyocytes was significantly reduced. Additionally, LQT2-derived cardiac cells were more sensitive than controls to potentially arrhythmogenic drugs, including sotalol, and demonstrated arrhythmogenic electrical activity. Consistent with clinical observations, the LQT2 cardiomyocytes demonstrated a more pronounced inverse correlation between the beating rate and repolarization time compared with control cells. Prolonged action potential is present in LQT2-specific cardiomyocytes derived from a mutation carrier and arrhythmias can be triggered by a commonly used drug. Thus, the iPSC-derived, disease-specific cardiomyocytes could serve as an important platform to study pathophysiological mechanisms and drug sensitivity in LQT2.


PLOS ONE | 2009

Lentiviral vectors and protocols for creation of stable hESC lines for fluorescent tracking and drug resistance selection of cardiomyocytes.

Hiroko Kita‐Matsuo; Maria Barcova; Natalie L. Prigozhina; Nathan Salomonis; Karen Wei; Jeffrey G. Jacot; Brandon Nelson; Sean Spiering; René Haverslag; Changsung Kim; Maria Talantova; Ruchi Bajpai; Diego Calzolari; Alexey Terskikh; Andrew D. McCulloch; Jeffrey H. Price; Bruce R. Conklin; H.S. Vincent Chen; Mark Mercola

Background Developmental, physiological and tissue engineering studies critical to the development of successful myocardial regeneration therapies require new ways to effectively visualize and isolate large numbers of fluorescently labeled, functional cardiomyocytes. Methodology/Principal Findings Here we describe methods for the clonal expansion of engineered hESCs and make available a suite of lentiviral vectors for that combine Blasticidin, Neomycin and Puromycin resistance based drug selection of pure populations of stem cells and cardiomyocytes with ubiquitous or lineage-specific promoters that direct expression of fluorescent proteins to visualize and track cardiomyocytes and their progenitors. The phospho-glycerate kinase (PGK) promoter was used to ubiquitously direct expression of histone-2B fused eGFP and mCherry proteins to the nucleus to monitor DNA content and enable tracking of cell migration and lineage. Vectors with T/Brachyury and α-myosin heavy chain (αMHC) promoters targeted fluorescent or drug-resistance proteins to early mesoderm and cardiomyocytes. The drug selection protocol yielded 96% pure cardiomyocytes that could be cultured for over 4 months. Puromycin-selected cardiomyocytes exhibited a gene expression profile similar to that of adult human cardiomyocytes and generated force and action potentials consistent with normal fetal cardiomyocytes, documenting these parameters in hESC-derived cardiomyocytes and validating that the selected cells retained normal differentiation and function. Conclusion/Significance The protocols, vectors and gene expression data comprise tools to enhance cardiomyocyte production for large-scale applications.

Collaboration


Dive into the Bruce R. Conklin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nathan Salomonis

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karen Vranizan

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexander C. Zambon

Keck Graduate Institute of Applied Life Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge