Bruce R. Cords
Ecolab
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bruce R. Cords.
Applied and Environmental Microbiology | 2006
Tong Zhao; Teresa C. Podtburg; Ping Zhao; Bruce E. Schmidt; David A. Baker; Bruce R. Cords; Michael P. Doyle
ABSTRACT In previous studies workers determined that two lactic acid bacterium isolates, Lactococcus lactis subsp. lactis C-1-92 and Enterococcus durans 152 (competitive-exclusion bacteria [CE]), which were originally obtained from biofilms in floor drains, are bactericidal to Listeria monocytogenes or inhibit the growth of L. monocytogenes both in vitro and in biofilms at 4 to 37°C. We evaluated the efficacy of these isolates for reducing Listeria spp. contamination of floor drains of a plant in which fresh poultry is processed. Baseline assays revealed that the mean numbers of Listeria sp. cells in floor drains sampled on six different dates (at approximately biweekly intervals) were 7.5 log10 CFU/100 cm2 for drain 8, 4.9 log10 CFU/100 cm2 for drain 3, 4.4 log10 CFU/100 cm2 for drain 2, 4.1 log10 CFU/100 cm2 for drain 4, 3.7 log10 CFU/100 cm2 for drain 1, and 3.6 log10 CFU/100 cm2 for drain 6. The drains were then treated with 107 CE/ml in an enzyme-foam-based cleaning agent four times in 1 week and twice a week for the following 3 weeks. In samples collected 1 week after CE treatments were applied Listeria sp. cells were not detectable (samples were negative as determined by selective enrichment culture) for drains 4 and 6 (reductions of 4.1 and 3.6 log10 CFU/100 cm2, respectively), and the mean numbers of Listeria sp. cells were 3.7 log10 CFU/100 cm2 for drain 8 (a reduction of 3.8 log10 CFU/100 cm2), <1.7 log10 CFU/100 cm2 for drain 1 (detectable only by selective enrichment culture; a reduction of 3.3 log10 CFU/100 cm2), and 2.6 log10 CFU/100 cm2 for drain 3 (a reduction of 2.3 log10 CFU/100 cm2). However, the aerobic plate counts for samples collected from floor drains before, during, and after CE treatment remained approximately the same. The results indicate that application of the two CE can greatly reduce the number of Listeria sp. cells in floor drains at 3 to 26°C in a facility in which fresh poultry is processed.
Applied and Environmental Microbiology | 2007
J. Hilgren; K. M. J. Swanson; F. Diez-Gonzalez; Bruce R. Cords
ABSTRACT Biocide inactivation of Bacillus anthracis spores in the presence of food residues after a 10-min treatment time was investigated. Spores of nonvirulent Bacillus anthracis strains 7702, ANR-1, and 9131 were mixed with water, flour paste, whole milk, or egg yolk emulsion and dried onto stainless-steel carriers. The carriers were exposed to various concentrations of peroxyacetic acid, sodium hypochlorite (NaOCl), or hydrogen peroxide (H2O2) for 10 min at 10, 20, or 30°C, after which time the survivors were quantified. The relationship between peroxyacetic acid concentration, H2O2 concentration, and spore inactivation followed a sigmoid curve that was accurately described using a four-parameter logistic model. At 20°C, the minimum concentrations of peroxyacetic acid, H2O2, and NaOCl (as total available chlorine) predicted to inactivate 6 log10 CFU of B. anthracis spores with no food residue present were 1.05, 23.0, and 0.78%, respectively. At 10°C, sodium hypochlorite at 5% total available chlorine did not inactivate more than 4 log10 CFU. The presence of the food residues had only a minimal effect on peroxyacetic acid and H2O2 sporicidal efficacy, but the efficacy of sodium hypochlorite was markedly inhibited by whole-milk and egg yolk residues. Sodium hypochlorite at 5% total available chlorine provided no greater than a 2-log10 CFU reduction when spores were in the presence of egg yolk residue. This research provides new information regarding the usefulness of peroxygen biocides for B. anthracis spore inactivation when food residue is present. This work also provides guidance for adjusting decontamination procedures for food-soiled and cold surfaces.
Journal of Food Protection | 2013
Tong Zhao; Teresa C. Podtburg; Ping Zhao; Dong Chen; David A. Baker; Bruce R. Cords; Michael P. Doyle
The ability of Listeria monocytogenes and two competitive exclusion (CE) bacteria, Lactococcus lactis subsp. lactis strain C-1-92 and Enterococcus durans strain 152, to form biofilms on coupons composed of different materials (stainless steel, plastic, rubber, glass, and silicone) was determined at 4 and 8 °C. Biofilm characteristics were determined by scanning electron microscopy. L. monocytogenes produced well-formed biofilms within 24 h at 37 °C on coupon surfaces. Treating Listeria-laden biofilms with the CE isolates individually at either 4 or 8 °C for 3 weeks substantially reduced or eliminated listeriae in the biofilms. Treatment with L. lactis subsp. lactis strain C-1-92 and E. durans strain 152 at 4 °C for 3 weeks reduced the population of L. monocytogenes in a biofilm from 7.1 to 7.7 log CFU/cm2 to 3.0 to 4.5 log CFU/cm2 and to 3.1 to 5.2 log CFU/cm2 , respectively, and treatment at 8 °C for 3 weeks reduced L. monocytogenes from 7.5 to 8.3 log CFU/cm2 to 2.4 to 3.5 log CFU/cm2 and to 3.8 to 5.2 log CFU/cm2, respectively, depending on the coupon composition. These two CE isolates were combined and evaluated for control of Listeria bacteria in floor drains of a ready-to-eat poultry processing plant. The results revealed that treating the floor drains with CE four times in the first week eliminated detectable Listeria bacteria from five of six drains, and the drains remained free of detectable Listeria bacteria for 13 weeks following the first four treatments. These studies indicate that CE can effectively reduce Listeria contamination in biofilms and in flow drains of a plant producing ready-to-eat poultry products.
Journal of Food Protection | 2009
J. Hilgren; K. M. J. Swanson; F. Diez-Gonzalez; Bruce R. Cords
The susceptibility of spores of Bacillus subtilis, Bacillus cereus, and avirulent Bacillus anthracis to treatment with hydrogen peroxide, peroxyacetic acid, a peroxy-fatty acid mixture, sodium hypochlorite, and acidified sodium chlorite was investigated. Results indicated that B. cereus spores may be reasonable predictors of B. anthracis spore inactivation by peroxyacetic acid-based biocides. However, B. cereus was not a reliable predictor of B. anthracis inactivation by the other biocides. In studies comparing B. cereus and B. subtilis, B. cereus spores were more resistant (by 1.5 to 2.5 log CFU) than B. subtilis spores to peroxyacetic acid, the peroxy-fatty acid mixture, and acidified sodium chlorite. Conversely, B. subtilis spores were more resistant than B. cereus spores to hydrogen peroxide. These findings indicated the relevance of side-by-side testing of target organisms and potential surrogates against categories of biocides to determine whether both have similar properties and to validate the use of the surrogate microorganisms.
Journal of Food Protection | 2009
J. Hilgren; K. M. J. Swanson; F. Diez-Gonzalez; Bruce R. Cords
The efficacy of liquid biocides is influenced by surface cleanliness, treatment time, and temperature. Experiments were completed to measure the impact of these variables on the ability of commercial biocides to inactivate Yersinia pseudotuberculosis ATCC 29910, as a surrogate for Yersinia pestis, in the presence of food residues. The test organism was mixed with water, milk, flour, or egg yolk and then dried onto stainless steel coupons. Coupons were then exposed to sodium hypochlorite, acidified sodium chlorite, a quaternary ammonium compound, an iodophor, hydrogen peroxide, peroxyacetic acid, or a peroxy-fatty acid mixture, for 10 or 30 min at 10, 20, or 30 degrees C. For all biocides except the iodophor, manufacturer-recommended disinfection levels applied for 10 min at 20 degrees C resulted in 5-log reductions of the test organism dried alone or with flour. However, in the presence of whole milk or egg yolk residue, markedly higher sodium hypochlorite, peroxyacetic acid, peroxy-fatty acid mixture, quaternary ammonium compound, and iodophor concentrations were needed to achieve the 5-log reductions. Further, the quaternary ammonium compound was incapable of achieving 5-log reductions in 10 min in the presence of milk and egg yolk residues. Hydrogen peroxide and acidified sodium chlorite disinfection levels (7.5% and 2500 ppm, respectively) achieved 5-log reductions under all test conditions. These results suggest that commercial disinfectants can adequately decontaminate clean surfaces contaminated with Y. pseudotuberculosis and Y. pestis. These results also provide guidance on the feasibility of overcoming the negative influence of food residues on disinfection by adjusting biocide exposure time, temperature, and concentration.
Archive | 2011
Timothy A. Gutzmann; Brian J. Anderson; Pamela J. Reed; Bruce R. Cords; Lawrence A. Grab; Edward H. Richardson
Archive | 2000
Timothy A. Gutzmann; Brian J. Anderson; Bruce R. Cords; Lawrence A. Grab; Edward H. Richardson; Pamela Reed McKay
Archive | 1995
Robert D. Hei; Guang-jong J. Wei; Bruce R. Cords; Keith D. Lokkesmoe
Archive | 1999
Robert D. P. Hei; Kim R. Smith; Polly D. Laugen; Bruce R. Cords; Shaun P. Kennedy
Archive | 1999
Minyu Li; Kim L. Person-Hei; Bruce R. Cords; Keith D. Lokkesmoe; Joy G. Herdt