Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bruce R. Hamaker is active.

Publication


Featured researches published by Bruce R. Hamaker.


Journal of Cereal Science | 2003

FACTORS AFFECTING SORGHUM PROTEIN DIGESTIBILITY

Kwaku G. Duodu; John R. N. Taylor; Peter S. Belton; Bruce R. Hamaker

Abstract In the semi-arid tropics worldwide, sorghum ( Sorghum bicolor (L.) Moench) is cultivated by farmers on a subsistence level and consumed as food by humans. A nutritional limitation to its use is the poor digestibility of sorghum protein when wet cooked. The factors affecting wet cooked sorghum protein digestibility may be categorised into two main groups: exogenous factors (grain organisational structure, polyphenols, phytic acid, starch and non-starch polysaccharides) and endogenous factors (disulphide and non-disulphide crosslinking, kafirin hydrophobicity and changes in protein secondary structure). All these factors have been shown to influence sorghum protein digestibility. More than one factor may be at play at any time depending on the nature or the state in which the sorghum grain is; that is whether whole grain, endosperm, protein body preparation, high-tannin or condensed-tannin-free. It is proposed that protein crosslinking may be the greatest factor that influences sorghum protein digestibility. This may be between γ- and β-kafirin proteins at the protein body periphery, which may impede digestion of the centrally located major storage protein, α-kafirin, or between γ- or β-kafirin and α-kafirin.


The Plant Cell | 2002

Maize Opaque Endosperm Mutations Create Extensive Changes in Patterns of Gene Expression

Brenda G. Hunter; Mary Beatty; George W. Singletary; Bruce R. Hamaker; Brian P. Dilkes; Brian A. Larkins; Rudolf Jung

Maize starchy endosperm mutants have kernel phenotypes that include a brittle texture, susceptibility to insect pests, and inferior functional characteristics of products made from their flour. At least 18 such mutants have been identified, but only in the cases of opaque2 (o2) and floury2 (fl2), which affect different aspects of storage protein synthesis, is the molecular basis of the mutation known. To better understand the relationship between the phenotypes of these mutants and their biochemical bases, we characterized the protein and amino acid composition, as well as the mRNA transcript profiles, of nearly isogenic inbred lines of W64A o1, o2, o5, o9, o11, Mucuronate (Mc), Defective endosperm B30 (DeB30), and fl2. The largest reductions in zein protein synthesis occur in the W64A o2, DeB30, and fl2 mutants, which have ∼35 to 55% of the wild-type level of storage proteins. Zeins in W64A o5, o9, o11, and Mc are within 80 to 90% of the amount found in the wild type. Only in the cases of o5 and Mc were significant qualitative changes in zein synthesis observed. The pattern of gene expression in normal and mutant genotypes was assayed by profiling endosperm mRNA transcripts at 18 days after pollination with an Affymetrix GeneChip containing >1400 selected maize gene sequences. Compared with W64A sugary1, a mutant defective in starch synthesis, alterations in the gene expression patterns of the opaque mutants are very pleiotropic. Increased expression of genes associated with physiological stress, and the unfolded protein response, are common features of the opaque mutants. Based on global patterns of gene expression, these mutants were categorized in four phenotypic groups as follows: W64A+ and o1; o2; o5/o9/o11; and Mc and fl2.


Critical Reviews in Food Science and Nutrition | 2009

Slowly digestible starch: concept, mechanism, and proposed extended glycemic index.

Genyi Zhang; Bruce R. Hamaker

Starch is the major glycemic carbohydrate in foods, and its nutritional property is related to its rate and extent of digestion and absorption in the small intestine. A classification of starch into rapidly digestible starch (RDS), slowly digestible starch (SDS), and resistant starch (RS) based on the in vitro Englyst test is used to specify the nutritional quality of starch. Both the RDS and RS fractions have been extensively studied while there are only limited studies on the intermediate starch fraction of SDS, particularly regarding its structural basis and slow digestion mechanism. The current understanding of SDS including its concept, measurement method, structural basis and mechanism, physiological consequences, and approaches to make SDS is reviewed. An in vivo method of extended glycemic index (EGI) is proposed to evaluate its metabolic effect and related health consequences.


Journal of Agricultural and Food Chemistry | 2008

Nutritional property of endosperm starches from maize mutants: a parabolic relationship between slowly digestible starch and amylopectin fine structure.

Genyi Zhang; Zihua Ao; Bruce R. Hamaker

The relationship between the slow digestion property of cooked maize starch and its molecular fine structure was investigated. Results of the in vitro Englyst assay showed a range of rapidly digestible starch (RDS) (70.1-98.9%), slowly digestible starch (SDS) (0.2-20.3%), and resistant starch (RS) (0.0-13.7%) among the tested maize mutant flour samples. Further analysis showed that amylose content was significantly correlated ( R = 0.763, P < 0.001) with RS amount but not with that of SDS, indicating that amylopectin is the starch molecule associated with SDS. Total starch debranching analysis revealed a parabolic relationship between SDS content and the weight ratio of amylopectin short chains (DP < 13, named SF) to long chains (DP >/= 13, named LF), which means amylopectin with a higher amount of either short chains or long chains can produce relatively high amounts of SDS. Furthermore, debranching analysis of the SDS materials from samples with the highest and lowest weight ratios of SF/LF (both had a high amount SDS) showed significantly different profiles, indicating there is not a uniform molecular structure for SDS. Thus, genetic mutants of maize samples have a good potential to provide raw starch materials of high nutritional quality. An additional finding showed that a simple and comparably high-throughput technique of Rapid Visco-Analyzer (RVA) can be used to screen genetic mutants on the basis of their RVA profiles.


Advances in Nutrition | 2010

Pulse Consumption, Satiety, and Weight Management

Megan A. McCrory; Bruce R. Hamaker; Jennifer C Lovejoy; Petra Eichelsdoerfer

The prevalence of obesity has reached epidemic proportions, making finding effective solutions to reduce obesity a public health priority. One part of the solution could be for individuals to increase consumption of nonoilseed pulses (dry beans, peas, chickpeas, and lentils), because they have nutritional attributes thought to benefit weight control, including slowly digestible carbohydrates, high fiber and protein contents, and moderate energy density. Observational studies consistently show an inverse relationship between pulse consumption and BMI or risk for obesity, but many do not control for potentially confounding dietary and other lifestyle factors. Short-term (≤1 d) experimental studies using meals controlled for energy, but not those controlled for available carbohydrate, show that pulse consumption increases satiety over 2-4 h, suggesting that at least part of the effect of pulses on satiety is mediated by available carbohydrate amount or composition. Randomized controlled trials generally support a beneficial effect of pulses on weight loss when pulse consumption is coupled with energy restriction, but not without energy restriction. However, few randomized trials have been conducted and most were short term (3-8 wk for whole pulses and 4-12 wk for pulse extracts). Overall, there is some indication of a beneficial effect of pulses on short-term satiety and weight loss during intentional energy restriction, but more studies are needed in this area, particularly those that are longer term (≥1 y), investigate the optimal amount of pulses to consume for weight control, and include behavioral elements to help overcome barriers to pulse consumption.


Cereal Chemistry | 1997

Effect of lime on gelatinization of corn flour and starch

Cory M. Bryant; Bruce R. Hamaker

ABSTRACT Analysis of swelling power, water retention capacity, and degree of gelatinization of corn flour cooked in water with and without lime indicated, over a concentration range of 0–1% (w/v), that at low concentrations, lime increases swelling and digestibility of starch granules. Measurement of starch solubility revealed an increase in the amount of starch dissolved by lime cooking. Swelling, retention, and gelatinization exhibited maxima at or near 0.2% (w/v) lime, and then decreased as lime concentration increased. Hot-stage polarized light microscopy and differential scanning calorimetry of isolated starch revealed increasing gelatinization temperatures with increasing lime concentrations. It is hypothesized that the high pH of the system causes starch hydroxyl groups to ionize, thereby creating binding sites for Ca++/CaOH+ and producing Ca-starch crosslinks. It is also suggested that, at low lime levels (<0.4%, w/v), granule crystalline regions are disrupted and the granule matrix is stretched b...


Cereal Chemistry | 1998

Low α-amylase starch digestibility of cooked sorghum flours and the effect of protein

Genyi Zhang; Bruce R. Hamaker

ABSTRACT The comparably low starch digestibility of cooked sorghum flours was studied with reference to normal maize. Four sorghum cultivars that represent different types of endosperm were used. Starch digestibilities of 4% cooked sorghum flour suspensions, measured as reducing sugars liberated following α-amylase digestion, were 15–25% lower than for cooked maize flour, but there were no differences among the cooked pure starches. After the flours were predigested with pepsin to remove some proteins, the starch digestibility of cooked sorghum flours increased 7–14%, while there was only 2% increase in normal maize; however, there was no effect of pepsin treatment on starch digestibility if the flours were first cooked and then digested. After cooking with reducing agent, 100 mM sodium metabisulfite, starch digestibility of sorghum flours increased significantly while no significant effect was observed for maize. Also, starch solubility of sorghum flours at 85 and 100°C was lower than in maize, and sodiu...


Cereal Chemistry | 2004

Slowly Digestible Starch from Debranched Waxy Sorghum Starch: Preparation and Properties

Sang Ick Shin; Hea Jin Choi; Koo Min Chung; Bruce R. Hamaker; Kwan Hwa Park; Tae Wha Moon

ABSTRACT Effects of debranching time, storage time, and storage temperature on production and structural properties of slowly digestible starch (SDS) were investigated. Waxy sorghum starch was hydrolyzed by isoamylase for various times (0–24 hr), and the variously debranched products were stored at -30, 1, and 30°C for 1–6 days. Optimal conditions for SDS production were isoamylase treatment for 8 hr and storage at 1°C for three days, resulting in SDS content of 27.0% in the optimum product. Microscopic observation revealed that rapidly digestible starch (RDS) and SDS were removed from the edges and surfaces of the optimum product by α-amylase digestion. Digestion conditions that removed RDS and SDS resulted in a residue with a higher transition temperature and enthalpy than raw starch on a differential scanning calorimetric thermogram. Removal of RDS alone did not cause distinct decrements of peak temperature (Tp) and enthalpy (ΔH) compared with stored starch. The optimum SDS product showed an amorphous ...


Current Opinion in Biotechnology | 2016

Prebiotics: why definitions matter.

Robert W. Hutkins; Janina A. Krumbeck; Laure B. Bindels; Patrice D. Cani; George C. Fahey; Yong Jun Goh; Bruce R. Hamaker; Eric C. Martens; David A. Mills; Robert A. Rastal; Elaine E Vaughan; Mary Ellen Sanders

The prebiotic concept was introduced twenty years ago, and despite several revisions to the original definition, the scientific community has continued to debate what it means to be a prebiotic. How prebiotics are defined is important not only for the scientific community, but also for regulatory agencies, the food industry, consumers and healthcare professionals. Recent developments in community-wide sequencing and glycomics have revealed that more complex interactions occur between putative prebiotic substrates and the gut microbiota than previously considered. A consensus among scientists on the most appropriate definition of a prebiotic is necessary to enable continued use of the term.


EBioMedicine | 2015

Dietary Modulation of Gut Microbiota Contributes to Alleviation of Both Genetic and Simple Obesity in Children

Chenhong Zhang; Aihua Yin; Hongde Li; Ruirui Wang; Guojun Wu; Jian Shen; Menghui Zhang; Linghua Wang; Yaping Hou; Haimei Ouyang; Yan Zhang; Yinan Zheng; Jicheng Wang; Xiaofei Lv; Yulan Wang; Feng Zhang; Benhua Zeng; Wenxia Li; Feiyan Yan; Yufeng Zhao; Xiaoyan Pang; Xiaojun Zhang; Huaqing Fu; Feng Chen; Naisi Zhao; Bruce R. Hamaker; Laura C. Bridgewater; David Weinkove; Karine Clément; Joël Doré

Gut microbiota has been implicated as a pivotal contributing factor in diet-related obesity; however, its role in development of disease phenotypes in human genetic obesity such as Prader–Willi syndrome (PWS) remains elusive. In this hospitalized intervention trial with PWS (n = 17) and simple obesity (n = 21) children, a diet rich in non-digestible carbohydrates induced significant weight loss and concomitant structural changes of the gut microbiota together with reduction of serum antigen load and alleviation of inflammation. Co-abundance network analysis of 161 prevalent bacterial draft genomes assembled directly from metagenomic datasets showed relative increase of functional genome groups for acetate production from carbohydrates fermentation. NMR-based metabolomic profiling of urine showed diet-induced overall changes of host metabotypes and identified significantly reduced trimethylamine N-oxide and indoxyl sulfate, host-bacteria co-metabolites known to induce metabolic deteriorations. Specific bacterial genomes that were correlated with urine levels of these detrimental co-metabolites were found to encode enzyme genes for production of their precursors by fermentation of choline or tryptophan in the gut. When transplanted into germ-free mice, the pre-intervention gut microbiota induced higher inflammation and larger adipocytes compared with the post-intervention microbiota from the same volunteer. Our multi-omics-based systems analysis indicates a significant etiological contribution of dysbiotic gut microbiota to both genetic and simple obesity in children, implicating a potentially effective target for alleviation. Research in context Poorly managed diet and genetic mutations are the two primary driving forces behind the devastating epidemic of obesity-related diseases. Lack of understanding of the molecular chain of causation between the driving forces and the disease endpoints retards progress in prevention and treatment of the diseases. We found that children genetically obese with Prader–Willi syndrome shared a similar dysbiosis in their gut microbiota with those having diet-related obesity. A diet rich in non-digestible but fermentable carbohydrates significantly promoted beneficial groups of bacteria and reduced toxin-producers, which contributes to the alleviation of metabolic deteriorations in obesity regardless of the primary driving forces.

Collaboration


Dive into the Bruce R. Hamaker's collaboration.

Top Co-Authors

Avatar

Buford L. Nichols

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Roberto Quezada-Calvillo

Universidad Autónoma de San Luis Potosí

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ali Keshavarzian

Rush University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mario G. Ferruzzi

North Carolina State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge