Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bruce R. Locke is active.

Publication


Featured researches published by Bruce R. Locke.


Journal of Hazardous Materials | 1995

Formation of hydroxyl radicals, hydrogen peroxide and aqueous electrons by pulsed streamer corona discharge in aqueous solution

A.A. Joshi; Bruce R. Locke; P. Arce; Wright C. Finney

The initiation reaction rate constants for the formation of hydroxyl radicals, hydrogen peroxide, and aqueous electrons using a pulsed streamer corona discharge in aqueous solutions are determined in the present study. The free radical scavenging property of carbonate ions was used to determine the initiation rate constants for the formation of hydroxyl radicals and hydrogen peroxide from the pulsed streamer corona discharge. The effects of average current, voltage, and power input on the initiation rate constants were also studied. A reactor model including known chemical reaction kinetics was developed for the degradation of phenol, and the initiation rate constant for aqueous electrons was determined by fitting the experimental data of phenol degradation to the model. Transient concentration profiles predicted by the model were compared to those of experiments for the formation of hydrogen peroxide in deionized water and for the degradation of hydroquinone. It was observed that the model results match experimental results satisfactorily for the formation of hydrogen peroxide and qualitatively follow the experimental results for the degradation of hydroquinone. The model was improved by considering that the reaction rate constants vary with the current in the reactor. The current was observed to vary with time for the cases where no salts were added to the reactor. It was observed that the improved model follows the experimental results satisfactorily for high initial concentrations (> 5.4 × 10−5M) of hydroquinone.


Plasma Sources Science and Technology | 2011

Review of the methods to form hydrogen peroxide in electrical discharge plasma with liquid water

Bruce R. Locke; Kai-Yuan Shih

This paper presents a review of the literature dealing with the formation of hydrogen peroxide from plasma processes. Energy yields for hydrogen peroxide generation by plasma from water span approximately three orders of magnitude from 4 ? 10?2 to 80?g?kWh?1. A wide range of plasma processes from rf to pulsed, ac, and dc discharges directly in the liquid phase have similar energy yields and may thus be limited by radical quenching processes at the plasma?liquid interface. Reactor modification using discharges in bubbles and discharges over the liquid phase can provide modest improvements in energy yield over direct discharge in the liquid, but the interpretation is complicated by additional chemical reactions of gas phase components such as ozone and nitrogen oxides. The highest efficiency plasma process utilizes liquid water droplets that may enhance efficiency by sequestering hydrogen peroxide in the liquid and by suppressing decomposition reactions by radicals from the gas and at the interface. Kinetic simulations of water vapor reported in the literature suggest that plasma generation of hydrogen peroxide should approach 45% of the thermodynamics limit, and this fact coupled with experimental studies demonstrating improvements with the presence of the condensed liquid phase suggest that further improvements in energy yield may be possible. Plasma generation of hydrogen peroxide directly from water compares favorably with a number of other methods including electron beam, ultrasound, electrochemical and photochemical methods, and other chemical processes.


Chemical Engineering Journal | 2001

The role of Fenton’s reaction in aqueous phase pulsed streamer corona reactors

David R. Grymonpré; Amit Sharma; Wright C. Finney; Bruce R. Locke

Abstract Aqueous phase pulsed streamer corona reactors are currently under development for a number of applications including water and wastewater treatment. Previous research has demonstrated that a high voltage pulsed electrical discharge directly into water leads to the formation of reactive species such as hydrogen peroxide and hydroxyl radicals. Since significant quantities of hydrogen peroxide are produced, the role of Fenton’s reactions in the pulsed corona reactor is analyzed both experimentally and with computer simulations in the present work. Experimental data shows the existence of optimal iron concentrations for the degradation of phenol, and that the formation of hydrogen peroxide by the pulsed corona discharge is dependent upon both the applied electric field and the solution conductivity. A mathematical model based upon mass balances for 31 radical and molecular species in the batch reactor (including 71 chemical reactions) has been developed and sensitivity analysis performed to identify key reactions. This model is used to show the effects of initial reaction conditions (including iron and phenol concentrations) on the degradation of phenol and the formation of reaction intermediate products and by-products. The model results are in qualitative and semi-quantitative agreement with the experimental observations on the effects of initial iron and phenol concentrations on phenol degradation and by-product formation.


IEEE Transactions on Industry Applications | 2004

Hydrogen peroxide and ozone formation in hybrid gas-liquid electrical discharge Reactors

Petr Lukes; Austin T. Appleton; Bruce R. Locke

Ozone in the gas phase and hydrogen peroxide in the liquid phase were simultaneously formed in hybrid electrical discharge reactors, known as the hybrid-series and hybrid-parallel reactors, which utilize both gas phase nonthermal plasma formed above the water surface and direct liquid phase corona-like discharge in the water. In the series configuration the high voltage needle-point electrode is submerged and the ground electrode is placed in the gas phase above the water surface. The parallel configuration employs a high voltage electrode in the gas phase and a high voltage needle-point electrode in the liquid phase with the ground electrode placed at the gas-liquid interface. In both hybrid reactors the gas phase concentration of ozone reached a power-dependent steady state, whereas the hybrid-parallel reactor produced a substantially larger amount of ozone than the hybrid series. Hydrogen peroxide was produced in both hybrid reactors at a similar rate to that of a single-phase liquid electrical discharge reactor. The resulting concentration of H/sub 2/O/sub 2/ in the hybrid reactors, however, depended on the pH of the solution and the gas phase ozone concentration since H/sub 2/O/sub 2/ was decomposed by dissolved ozone at high pH.


Biotechnology and Bioengineering | 1999

Analysis of cell growth kinetics and substrate diffusion in a polymer scaffold.

Craig J. Galban; Bruce R. Locke

The cultivation of cartilage cells (chondrocytes) in polymer scaffolds leads to implants that may potentially be used to repair damaged joint cartilage or for reconstructive surgery. For this technique to be medically applicable, the physical parameters that govern cell growth in a polymer scaffold must be understood. This understanding of cell behavior under in vitro conditions, where diffusion is the primary mode of transport of nutrients, may aid in the scale-up of the cartilage generation process. A mathematical model of chondrocyte generation and nutrient consumption is developed here to analyze the behavior of cell growth in a biodegradable polymer matrix for a series of different thickness polymers. Recent literature has implied that the diffusion of nutrients is a major factor that limits cell growth (Freed et al., 1994). In the present paper, a mathematical model is developed to directly relate the effects of increasing cell mass in the polymer matrix on the transport of nutrients. Reaction and diffusion of nutrients in the cell-polymer system are described using the fundamental species continuity equations and the volume averaging method. The volume averaging method is utilized to derive a single averaged nutrient continuity equation that includes the effective transport properties. This approach allows for the derivation of effective diffusion and rate coefficients as functions of the cell volume fraction. The cell volume fraction as a function of time is determined by solution of a material balance on cell mass. Growth functions including the Moser, a modified Contois, and an nth-order heterogeneous growth kinetic model are evaluated through a parameter analysis, and the results are compared to experimental data found in the literature. The results indicate that cellular functions in conjunction with mass transfer processes can account partially for the general trends in the cell growth behavior for various thickness polymers. The Contois growth function appeared to describe the data more accurately in terms of the lag period at early times and the long time limits. However, all kinetic growth functions required variations in the kinetic parameters to fully describe the effects of polymer thickness. This result implies that restricted diffusion of nutrients is not the sole factor limiting cell growth when the thickness of the polymer is changed. Therefore, further experimental data and model improvements are needed to accurately describe the cell growth process.


Plasma Sources Science and Technology | 2016

Plasma–liquid interactions: a review and roadmap

Pj Peter Bruggeman; Mark J. Kushner; Bruce R. Locke; Jge Gardeniers; W. G. Graham; David B. Graves; Rchm Hofman-Caris; D Marić; Jonathan P. Reid; E Ceriani; D. Fernandez Rivas; John E. Foster; Sc Garrick; Yury Gorbanev; Satoshi Hamaguchi; Felipe Iza; Helena Jablonowski; Juergen F. Kolb; František Krčma; Petr Lukes; Zdenko Machala; I. Marinov; Davide Mariotti; S. Mededovic Thagard; D. Minakata; Erik C. Neyts; J. Pawlat; Z. Lj. Petrović; R. Pflieger; Stephan Reuter

Plasma–liquid interactions represent a growing interdisciplinary area of research involving plasma science, fluid dynamics, heat and mass transfer, photolysis, multiphase chemistry and aerosol science. This review provides an assessment of the state-of-the-art of this multidisciplinary area and identifies the key research challenges. The developments in diagnostics, modeling and further extensions of cross section and reaction rate databases that are necessary to address these challenges are discussed. The review focusses on non-equilibrium plasmas.


Journal of Physics D | 2005

Plasmachemical oxidation processes in a hybrid gas-liquid electrical discharge reactor

Petr Lukes; Bruce R. Locke

Oxidation processes induced in water by pulsed electrical discharges generated simultaneously in the gas phase in close proximity to the water surface and directly in the liquid were investigated in a hybrid series gas?liquid electrical discharge reactor. The mechanism of phenol degradation was studied through its dependence on the gas phase and liquid phase compositions using pure argon and oxygen atmospheres above the liquid and different initial pH values in the aqueous solution. Phenol degradation was significantly enhanced in the hybrid-series reactor compared with the phenol removal by the single-liquid phase discharge reactor. Under an argon atmosphere the mechanism of phenol degradation was mainly caused by the electrophilic attack of OH? radicals produced by the liquid phase discharge directly in water and OH? radicals produced by the gas phase discharge at the gas?liquid interface. Under an oxygen atmosphere the formation of gaseous ozone dominated over the formation of OH? radicals, and the contribution of the gas phase discharge in this case was determined mainly by the dissolution of gaseous ozone into the water and its subsequent interaction with phenol. At high pH phenol was degraded, in addition to the direct attack by ozone, also through indirect reactions of OH? radicals formed via a peroxone process by the decomposition of dissolved ozone by hydrogen peroxide produced by the liquid phase discharge. Such a mechanism was proved by the detection of cis,cis-muconic acid and pH-dependent degradation of phenol, which resulted in significantly higher removal of phenol from alkaline solution observed under oxygen atmosphere than in argon.


Biotechnology Progress | 2008

Effects of oxygen transport on 3-d human mesenchymal stem cell metabolic activity in perfusion and static cultures: experiments and mathematical model.

Feng Zhao; Pragyansri Pathi; Warren L. Grayson; Qi Xing; Bruce R. Locke; Teng Ma

Human mesenchymal stem cells (hMSCs) have unique potential to develop into functional tissue constructs to replace a wide range of tissues damaged by disease or injury. While recent studies have highlighted the necessity for 3‐D culture systems to facilitate the proper biological, physiological, and developmental processes of the cells, the effects of the physiological environment on the intrinsic tissue development characteristics in the 3‐D scaffolds have not been fully investigated. In this study, experimental results from a 3‐D perfusion bioreactor system and the static culture are combined with a mathematical model to assess the effects of oxygen transport on hMSC metabolism and proliferation in 3‐D constructs grown in static and perfusion conditions. Cells grown in the perfusion culture had order of magnitude higher metabolic rates, and the perfusion culture supports higher cell density at the end of cultivation. The specific oxygen consumption rate for the constructs in the perfusion bioreactor was found to decrease from 0.012 to 0.0017 μmol/106 cells/h as cell density increases, suggesting intrinsic physiological change at high cell density. BrdU staining revealed the noneven spatial distribution of the proliferating cells in the constructs grown under static culture conditions compared to the cells that were grown in the perfusion system. The hypothesis that the constructs in static culture grow under oxygen limitation is supported by higher YL/G in static culture. Modeling results show that the oxygen tension in the static culture is lower than that of the perfusion unit, where the cell density was 4 times higher. The experimental and modeling results show the dependence of cell metabolism and spatial growth patterns on the culture environment and highlight the need to optimize the culture parameters in hMSC tissue engineering


Chemical Engineering Science | 1999

Aqueous-phase pulsed streamer corona reactor using suspended activated carbon particles for phenol oxidation: model-data comparison

David R. Grymonpré; Wright C. Finney; Bruce R. Locke

A pulsed high-voltage electrical discharge that produces streamers, or regions of non-thermal plasma, has been shown to be useful for degrading small organic species in synthetic wastewater in a bench-scale experimental system. This process is an example of an advanced oxidation technology that leads to the formation of hydroxyl radicals, hydrogen peroxide, and aqueous electrons, which in turn lead to organic contaminant removal through direct chemical reactions. Experimental results show that with activated carbon particles present, the removal of organic contaminants is increased due to the combination of direct oxidation of the organic species in the bulk fluid by pulsed corona and adsorption of the organic species to the surface of the activated carbon. There exists also the possibility of reactions occurring on the surface of the activated carbon-induced by the electrical discharge, thus continually regenerating the activated carbon. The present study develops a mathematical model incorporating multicomponent bulk and surface phase reactions coupled with mass transfer, internal particle diffusion, and adsorption to the carbon particles. Comparison of experimental results and theory using phenol as a model compound implies surface reactions occurring on the activated carbon particles.


Biotechnology and Bioengineering | 1999

Effects of spatial variation of cells and nutrient and product concentrations coupled with product inhibition on cell growth in a polymer scaffold

Craig J. Galban; Bruce R. Locke

The effects of spatial variation of cells and nutrient and product concentration, in combination with product inhibition in cell growth kinetics on chondrocyte generation in a polymer scaffold, are analyzed. Experimental studies reported previously have demonstrated spatial dependence in the cultivation of chondrocytes. In the present study, the cell-polymer system is assumed to consist of two distinct phases. The cells, fluid, polymer matrix, and extracellular matrix comprise one phase, and the other phase consists of a fluid and polymer matrix. The only two species in the fluid considered to affect cell growth are the nutrient and product. The multiphase transport process of these two species in the cell-polymer system is described by the species continuity equations and corresponding boundary conditions for each individual phase. A volume-averaging approach is utilized for this system to derive averaged species continuity equations for the nutrient and product concentrations. The volume-averaging approach allows for a single species in a two-phase system to be represented by a single averaged continuity equation. Competitive product inhibition, saturation kinetics of substrate, and cell population control are assumed to affect the cell growth kinetics. A modified Contois growth kinetic model is used to represent the three factors that affect cell growth. A parameter analysis is performed and the results are compared qualitatively with experimental data found in the literature.

Collaboration


Dive into the Bruce R. Locke's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen T. Kinsey

University of North Carolina at Wilmington

View shared research outputs
Top Co-Authors

Avatar

Radu Burlica

Florida State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Petr Lukes

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Kai-Yuan Shih

Florida State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge