Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bruce T. Lahn is active.

Publication


Featured researches published by Bruce T. Lahn.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Geometric cues for directing the differentiation of mesenchymal stem cells.

Kristopher A. Kilian; Branimir Bugarija; Bruce T. Lahn; Milan Mrksich

Significant efforts have been directed to understanding the factors that influence the lineage commitment of stem cells. This paper demonstrates that cell shape, independent of soluble factors, has a strong influence on the differentiation of human mesenchymal stem cells (MSCs) from bone marrow. When exposed to competing soluble differentiation signals, cells cultured in rectangles with increasing aspect ratio and in shapes with pentagonal symmetry but with different subcellular curvature—and with each occupying the same area—display different adipogenesis and osteogenesis profiles. The results reveal that geometric features that increase actomyosin contractility promote osteogenesis and are consistent with in vivo characteristics of the microenvironment of the differentiated cells. Cytoskeletal-disrupting pharmacological agents modulate shape-based trends in lineage commitment verifying the critical role of focal adhesion and myosin-generated contractility during differentiation. Microarray analysis and pathway inhibition studies suggest that contractile cells promote osteogenesis by enhancing c-Jun N-terminal kinase (JNK) and extracellular related kinase (ERK1/2) activation in conjunction with elevated wingless-type (Wnt) signaling. Taken together, this work points to the role that geometric shape cues can play in orchestrating the mechanochemical signals and paracrine/autocrine factors that can direct MSCs to appropriate fates.


Nature Biotechnology | 2011

Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine

Chun-Xiao Song; Keith E. Szulwach; Ye Fu; Qing Dai; Chengqi Yi; Xuekun Li; Yujing Li; Chih-Hsin Chen; Wen Zhang; Xing Jian; Jing Wang; Li Zhang; Timothy J. Looney; Baichen Zhang; Lucy A. Godley; Leslie M. Hicks; Bruce T. Lahn; Peng Jin; Chuan He

In contrast to 5-methylcytosine (5-mC), which has been studied extensively, little is known about 5-hydroxymethylcytosine (5-hmC), a recently identified epigenetic modification present in substantial amounts in certain mammalian cell types. Here we present a method for determining the genome-wide distribution of 5-hmC. We use the T4 bacteriophage β-glucosyltransferase to transfer an engineered glucose moiety containing an azide group onto the hydroxyl group of 5-hmC. The azide group can be chemically modified with biotin for detection, affinity enrichment and sequencing of 5-hmC–containing DNA fragments in mammalian genomes. Using this method, we demonstrate that 5-hmC is present in human cell lines beyond those previously recognized. We also find a gene expression level–dependent enrichment of intragenic 5-hmC in mouse cerebellum and an age-dependent acquisition of this modification in specific gene bodies linked to neurodegenerative disorders.


Cell | 2004

Accelerated Evolution of Nervous System Genes in the Origin of Homo sapiens

Steve Dorus; Eric J. Vallender; Patrick D. Evans; Jeffrey R. Anderson; Sandra L. Gilbert; Michael Mahowald; Gerald J. Wyckoff; Christine M. Malcom; Bruce T. Lahn

Human evolution is characterized by a dramatic increase in brain size and complexity. To probe its genetic basis, we examined the evolution of genes involved in diverse aspects of nervous system biology. We found that these genes display significantly higher rates of protein evolution in primates than in rodents. Importantly, this trend is most pronounced for the subset of genes implicated in nervous system development. Moreover, within primates, the acceleration of protein evolution is most prominent in the lineage leading from ancestral primates to humans. Thus, the remarkable phenotypic evolution of the human nervous system has a salient molecular correlate, i.e., accelerated evolution of the underlying genes, particularly those linked to nervous system development. In addition to uncovering broad evolutionary trends, our study also identified many candidate genes--most of which are implicated in regulating brain size and behavior--that might have played important roles in the evolution of the human brain.


PLOS ONE | 2010

Systematic comparison of constitutive promoters and the doxycycline-inducible promoter.

Jane Yuxia Qin; Li Zhang; Kayla L. Clift; Imge Hulur; Andy Peng Xiang; Bingzhong Ren; Bruce T. Lahn

Constitutive promoters are used routinely to drive ectopic gene expression. Here, we carried out a systematic comparison of eight commonly used constitutive promoters (SV40, CMV, UBC, EF1A, PGK and CAGG for mammalian systems, and COPIA and ACT5C for Drosophila systems). We also included in the comparison the TRE promoter, which can be activated by the rtTA transcriptional activator in a doxycycline-inducible manner. To make our findings representative, we conducted the comparison in a variety of cell types derived from several species. We found that these promoters vary considerably from one another in their strength. Most promoters have fairly consistent strengths across different cell types, but the CMV promoter can vary considerably from cell type to cell type. At maximal induction, the TRE promoter is comparable to a strong constitutive promoter. These results should facilitate more rational choices of promoters in ectopic gene expression studies.


Nature Genetics | 2004

Rate of molecular evolution of the seminal protein gene SEMG2 correlates with levels of female promiscuity.

Steve Dorus; Patrick D. Evans; Gerald J. Wyckoff; Sun Shim Choi; Bruce T. Lahn

Postcopulatory sperm competition is a key aspect of sexual selection and is believed to drive the rapid evolution of both reproductive physiology and reproduction-related genes. It is well-established that mating behavior determines the intensity of sperm competition, with polyandry (i.e., female promiscuity) leading to fiercer sperm competition than monandry. Studies in mammals, particularly primates, showed that, owing to greater sperm competition, polyandrous taxa generally have physiological traits that make them better adapted for fertilization than monandrous species, including bigger testes, larger seminal vesicles, higher sperm counts, richer mitochondrial loading in sperm and more prominent semen coagulation. Here, we show that the degree of polyandry can also impact the dynamics of molecular evolution. Specifically, we show that the evolution of SEMG2, the gene encoding semenogelin II, a main structural component of semen coagulum, is accelerated in polyandrous primates relative to monandrous primates. Our study showcases the intimate relationship between sexual selection and the molecular evolution of reproductive genes.


Nature Reviews Genetics | 2001

The human Y chromosome, in the light of evolution

Bruce T. Lahn; Nathaniel M. Pearson; Karin Jegalian

Most eukaryotic chromosomes, akin to messy toolboxes, store jumbles of genes with diverse biological uses. The linkage of a gene to a particular chromosome therefore rarely hints strongly at that genes function. One striking exception to this pattern of gene distribution is the human Y chromosome. Far from being random and diverse, known human Y-chromosome genes show just a few distinct expression profiles. Their relative functional conformity reflects evolutionary factors inherent to sex-specific chromosomes.


Nature Genetics | 1999

Retroposition of autosomal mRNA yielded testis-specific gene family on human Y chromosome

Bruce T. Lahn; David C. Page

Most genes in the human NRY (non-recombining portion of the Y chromosome) can be assigned to one of two groups: X-homologous genes or testis-specific gene families with no obvious X-chromosomal homologues. The CDY genes have been localized to the human Y chromosome, and we report here that they are derivatives of a conventional single-copy gene, CDYL (CDY-like), located on human chromosome 13 and mouse chromosome 6. CDY genes retain CDYL exonic sequences but lack its introns. In mice, whose evolutionary lineage diverged before the appearance of the Y-linked derivatives, the autosomal Cdyl gene produces two transcripts; one is expressed ubiquitously and the other is expressed in testes only. In humans, autosomal CDYL produces only the ubiquitous transcript; the testis-specific transcript is the province of the Y-borne CDY genes. Our data indicate that CDY genes arose during primate evolution by retroposition of a CDYL mRNA and amplification of the retroposed gene. Retroposition contributed to the gene content of the human Y chromosome, together with two other molecular evolutionary processes: persistence of a subset of genes shared with the X chromosome and transposition of genomic DNA harbouring intact transcription units.


Stem Cells | 2010

Nestin Is Required for the Proper Self-Renewal of Neural Stem Cells†‡§

Donghyun Park; Andy Peng Xiang; Frank Fuxiang Mao; Li Zhang; Chun-Guang Di; Xiao-Mei Liu; Yuan Shao; Bao-Feng Ma; Jae Hyun Lee; Kwon-Soo Ha; Noah M. Walton; Bruce T. Lahn

The intermediate filament protein, nestin, is a widely employed marker of multipotent neural stem cells (NSCs). Recent in vitro studies have implicated nestin in a number of cellular processes, but there is no data yet on its in vivo function. Here, we report the construction and functional characterization of Nestin knockout mice. We found that these mice show embryonic lethality, with neuroepithelium of the developing neural tube exhibiting significantly fewer NSCs and much higher levels of apoptosis. Consistent with this in vivo observation, NSC cultures derived from knockout embryos show dramatically reduced self‐renewal ability that is associated with elevated apoptosis but no overt defects in cell proliferation or differentiation. Unexpectedly, nestin deficiency has no detectable effect on the integrity of the cytoskeleton. Furthermore, the knockout of Vimentin, which abolishes nestins ability to polymerize into intermediate filaments in NSCs, does not lead to any apoptotic phenotype. These data demonstrate that nestin is important for the proper survival and self‐renewal of NSCs, and that this function is surprisingly uncoupled from nestins structural involvement in the cytoskeleton. STEM CELLS 2010;28:2162–2171


Proceedings of the National Academy of Sciences of the United States of America | 2002

Previously uncharacterized histone acetyltransferases implicated in mammalian spermatogenesis

Bruce T. Lahn; Zhao Lan Tang; Jianxin Zhou; Robert J. Barndt; Martti Parvinen; C. David Allis; David C. Page

During spermiogenesis (the maturation of spermatids into spermatozoa) in many vertebrate species, protamines replace histones to become the primary DNA-packaging protein.It has long been thought that this process is facilitated by the hyperacetylation of histone H4. However, the responsible histone acetyltransferase enzymes are yet to be identified. CDY is a human Y-chromosomal gene family expressed exclusively in the testis and implicated in male infertility. Its mouse homolog Cdyl, which is autosomal, is expressed abundantly in the testis. Proteins encoded by CDY and its homologs bear the “chromodomain,” a motif implicated in chromatin binding. Here, we show that (i) human CDY and mouse CDYL proteins exhibit histone acetyltransferase activity in vitro, with a strong preference for histone H4; (ii) expression of human CDY and mouse Cdyl genes during spermatogenesis correlates with the occurrence of H4 hyperacetylation; and (iii) CDY and CDYL proteins are localized to the nuclei of maturing spermatids where H4 hyperacetylation takes place. Taken together, these data link human CDY and mouse CDYL to the histone-to-protamine transition in mammalian spermiogenesis. This link offers a plausible mechanism to account for spermatogenic failure in patients bearing deletions of the CDY genes.


Nature Reviews Genetics | 2005

Genetic links between brain development and brain evolution

Sandra L. Gilbert; William B. Dobyns; Bruce T. Lahn

The most defining biological attribute of Homo sapiens is its enormous brain size and accompanying cognitive prowess. How this was achieved by means of genetic changes over the course of human evolution has fascinated biologists and the general public alike. Recent studies have shown that genes controlling brain development — notably those implicated in microcephaly (a congenital defect that is characterized by severely reduced brain size) — are favoured targets of natural selection during human evolution. We propose that genes that regulate brain size during development, such as microcephaly genes, are chief contributors in driving the evolutionary enlargement of the human brain. Based on the synthesis of recent studies, we propose a general methodological template for the genetic analysis of human evolution.

Collaboration


Dive into the Bruce T. Lahn's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Li Zhang

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Weiqiang Li

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Weihua Yu

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shunong Li

Sun Yat-sen University

View shared research outputs
Researchain Logo
Decentralizing Knowledge