Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bruce W. Barnes is active.

Publication


Featured researches published by Bruce W. Barnes.


Applied Optics | 2008

Side-line tunable laser transmitter for differential absorption lidar measurements of CO2: design and application to atmospheric measurements.

Grady J. Koch; Jeffrey Y. Beyon; Fabien Gibert; Bruce W. Barnes; Syed Ismail; Mulugeta Petros; Paul Petzar; Jirong Yu; Edward A. Modlin; Kenneth J. Davis; Upendra N. Singh

A 2 microm wavelength, 90 mJ, 5 Hz pulsed Ho laser is described with wavelength control to precisely tune and lock the wavelength at a desired offset up to 2.9 GHz from the center of a CO(2) absorption line. Once detuned from the line center the laser wavelength is actively locked to keep the wavelength within 1.9 MHz standard deviation about the setpoint. This wavelength control allows optimization of the optical depth for a differential absorption lidar (DIAL) measuring atmospheric CO(2) concentrations. The laser transmitter has been coupled with a coherent heterodyne receiver for measurements of CO(2) concentration using aerosol backscatter; wind and aerosols are also measured with the same lidar and provide useful additional information on atmospheric structure. Range-resolved CO(2) measurements were made with <2.4% standard deviation using 500 m range bins and 6.7 min? (1000 pulse pairs) integration time. Measurement of a horizontal column showed a precision of the CO(2) concentration to <0.7% standard deviation using a 30 min? (4500 pulse pairs) integration time, and comparison with a collocated in situ sensor showed the DIAL to measure the same trend of a diurnal variation and to detect shorter time scale CO(2) perturbations. For vertical column measurements the lidar was setup at the WLEF tall tower site in Wisconsin to provide meteorological profiles and to compare the DIAL measurements with the in situ sensors distributed on the tower up to 396 m height. Assuming the DIAL column measurement extending from 153 m altitude to 1353 m altitude should agree with the tower in situ sensor at 396 m altitude, there was a 7.9 ppm rms difference between the DIAL and the in situ sensor using a 30 min? rolling average on the DIAL measurement.


Optical Engineering | 2007

High-energy 2μm Doppler lidar for wind measurements

Grady J. Koch; Jeffrey Y. Beyon; Bruce W. Barnes; Mulugeta Petros; Jirong Yu; Farzin Amzajerdian; Michael J. Kavaya; Upendra N. Singh

A coherent Doppler lidar at 2 m wavelength has been built with higher output energy 100 mJ than previously available. The laser transmitter is based on diode-pumped Ho:Tm:LuLiF, a recently devel- oped laser material that allows more efficient energy extraction. Single- frequency operation is achieved by a ramp-and-fire injection seeding technique. An advanced photodetector architecture is used incorporating photodiodes in a dual-balanced configuration. A digital signal processing system has been built, allowing real-time display of wind and aerosol backscatter data products. The high pulse energy and receiver efficiency provides for measurement of wind fields to ranges not seen before with 2 m lidars, and example wind measurements were made to show this capability.


Proceedings of SPIE | 2009

Flight Test Performance of a High Precision Navigation Doppler Lidar

Diego F. Pierrottet; Farzin Amzajerdian; Larry B. Petway; Bruce W. Barnes; George E. Lockard

A navigation Doppler Lidar (DL) was developed at NASA Langley Research Center (LaRC) for high precision velocity measurements from a lunar or planetary landing vehicle in support of the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project. A unique feature of this DL is that it has the capability to provide a precision velocity vector which can be easily separated into horizontal and vertical velocity components and high accuracy line of sight (LOS) range measurements. This dual mode of operation can provide useful information, such as vehicle orientation relative to the direction of travel, and vehicle attitude relative to the sensor footprint on the ground. System performance was evaluated in a series of helicopter flight tests over the California desert. This paper provides a description of the DL system and presents results obtained from these flight tests.


Proceedings of SPIE | 2011

Navigation Doppler lidar sensor for precision altitude and vector velocity measurements: flight test results

Diego F. Pierrottet; Farzin Amzajerdian; Larry B. Petway; Bruce W. Barnes; George E. Lockard; Glenn D. Hines

An all fiber Navigation Doppler Lidar (NDL) system is under development at NASA Langley Research Center (LaRC) for precision descent and landing applications on planetary bodies. The sensor produces high-resolution line of sight range, altitude above ground, ground relative attitude, and high precision velocity vector measurements. Previous helicopter flight test results demonstrated the NDL measurement concepts, including measurement precision, accuracies, and operational range. This paper discusses the results obtained from a recent campaign to test the improved sensor hardware, and various signal processing algorithms applicable to real-time processing. The NDL was mounted in an instrumentation pod aboard an Erickson Air-Crane helicopter and flown over various terrains. The sensor was one of several sensors tested in this field test by NASAs Autonomous Landing and Hazard Avoidance Technology (ALHAT) project.


Proceedings of SPIE | 2013

Doppler lidar sensor for precision navigation in GPS-deprived environment

Farzin Amzajerdian; Diego F. Pierrottet; Glenn D. Hines; Larry B. Petway; Bruce W. Barnes

Landing mission concepts that are being developed for exploration of solar system bodies are increasingly ambitious in their implementations and objectives. Most of these missions require accurate position and velocity data during their descent phase in order to ensure safe, soft landing at the pre-designated sites. Data from the vehicle’s Inertial Measurement Unit will not be sufficient due to significant drift error after extended travel time in space. Therefore, an onboard sensor is required to provide the necessary data for landing in the GPS-deprived environment of space. For this reason, NASA Langley Research Center has been developing an advanced Doppler lidar sensor capable of providing accurate and reliable data suitable for operation in the highly constrained environment of space. The Doppler lidar transmits three laser beams in different directions toward the ground. The signal from each beam provides the platform velocity and range to the ground along the laser line-of-sight (LOS). The six LOS measurements are then combined in order to determine the three components of the vehicle velocity vector, and to accurately measure altitude and attitude angles relative to the local ground. These measurements are used by an autonomous Guidance, Navigation, and Control system to accurately navigate the vehicle from a few kilometers above the ground to the designated location and to execute a gentle touchdown. A prototype version of our lidar sensor has been completed for a closed-loop demonstration onboard a rocket-powered terrestrial free-flyer vehicle.


Journal of Applied Remote Sensing | 2010

Field testing of a high-energy 2-μm Doppler lidar

Grady J. Koch; Jeffrey Y. Beyon; Paul E. Petzar; Mulugeta Petros; Jirong Yu; Bo C. Trieu; Michael J. Kavaya; Upendra N. Singh; Edward A. Modlin; Bruce W. Barnes; Belay Demoz

A 2-μm wavelength coherent Doppler lidar for wind measurement has been developed of an unprecedented laser pulse energy of 250-mJ in a rugged package. This high pulse energy is produced by a Ho:Tm:LuLiF laser with an optical amplifier. While the lidar is meant for use as an airborne instrument, ground-based tests were carried out to characterize performance of the lidar. Atmospheric measurements are presented, showing the lidars capability for wind measurement in the atmospheric boundary layer and free troposphere. Lidar wind measurements are compared to a balloon sonde, showing good agreement between the two sensors.


MRS Proceedings | 2008

Linear FMCW Laser Radar for Precision Range and Vector Velocity Measurements

Diego Pierrottet; Farzin Amzajerdian; Larry B. Petway; Bruce W. Barnes; George E. Lockard; Manuel Rubio

An all fiber linear frequency modulated continuous wave (FMCW) coherent laser radar system is under development with a goal to aide NASA s new Space Exploration initiative for manned and robotic missions to the Moon and Mars. By employing a combination of optical heterodyne and linear frequency modulation techniques and utilizing state-of-the-art fiber optic technologies, highly efficient, compact and reliable laser radar suitable for operation in a space environment is being developed. Linear FMCW lidar has the capability of high-resolution range measurements, and when configured into a multi-channel receiver system it has the capability of obtaining high precision horizontal and vertical velocity measurements. Precision range and vector velocity data are beneficial to navigating planetary landing pods to the preselected site and achieving autonomous, safe soft-landing. The all-fiber coherent laser radar has several important advantages over more conventional pulsed laser altimeters or range finders. One of the advantages of the coherent laser radar is its ability to measure directly the platform velocity by extracting the Doppler shift generated from the motion, as opposed to time of flight range finders where terrain features such as hills, cliffs, or slopes add error to the velocity measurement. Doppler measurements are about two orders of magnitude more accurate than the velocity estimates obtained by pulsed laser altimeters. In addition, most of the components of the device are efficient and reliable commercial off-the-shelf fiber optic telecommunication components. This paper discusses the design and performance of a second-generation brassboard system under development at NASA Langley Research Center as part of the Autonomous Landing and Hazard Avoidance (ALHAT) project.


AIAA Guidance, Navigation, and Control (GNC) Conference | 2013

Field Demonstration of a Precision Navigation Lidar System for Space Vehicles

Diego F. Pierrottet; Farzin Amzajerdian; Larry B. Petway; Glenn D. Hines; Bruce W. Barnes

An all fiber Navigation Doppler Lidar (NDL) system was developed at NASA Langley Research Center (LaRC) to enable precision descent and landing on planetary bodies. The sensor can provide realtime high-resolution range, altitude, ground relative attitude, and high precision velocity vectors to a navigation system. This paper gives a description of the sensor development and its data products, and summarizes the results obtained by the sensor during field tests conducted in December 2012 at NASA Kennedy Space Center.


ieee aerospace conference | 2012

Doppler lidar sensor for precision landing on the Moon and Mars

Farzin Amzajerdian; Larry B. Petway; Glenn D. Hines; Bruce W. Barnes; Diego F. Pierrottet; George E. Lockard

Landing mission concepts that are being developed for exploration of planetary bodies are increasingly ambitious in their implementations and objectives. Most of these missions require accurate position and velocity data during their descent phase in order to ensure safe soft landing at the pre-designated sites. To address this need, a Doppler lidar is being developed by NASA under the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project. This lidar sensor is a versatile instrument capable of providing precision velocity vectors, vehicle ground relative altitude, and attitude. The capabilities of this advanced technology have been demonstrated through two helicopter flight test campaigns conducted over a vegetation-free terrain in 2008 and 2010. Presently, a prototype version of this sensor is being assembled for integration into a rocket-powered terrestrial free-flyer vehicle. Operating in a closed loop with the vehicles guidance and navigation system, the viability of this advanced sensor for future landing missions will be demonstrated through a series of flight tests in 2012.


Laser radar technology and applications. Conference | 2004

Validar: a testbed for advanced 2-micron Doppler lidar

Grady J. Koch; Mulugeta Petros; Bruce W. Barnes; Jeffrey Y. Beyon; Farzin Amzajerdian; Jirong Yu; Michael J. Kavaya; Upendra N. Singh

High-energy 2-micron lasers have been incorporated in a breadboard coherent Doppler lidar to test component technologies and explore applications for remote sensing of the atmosphere. Design of the lidar is presented including aspects in the laser transmitter, receiver, photodetector, and signal processing. Sample data is presented on wind profiling and CO2 concentration measurements.

Collaboration


Dive into the Bruce W. Barnes's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeffrey Y. Beyon

California State University

View shared research outputs
Top Co-Authors

Avatar

Jirong Yu

Langley Research Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge