Bruce W. Wood
Agricultural Research Service
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bruce W. Wood.
Plant Physiology | 2006
Cheng Bai; Charles C. Reilly; Bruce W. Wood
The existence of nickel (Ni) deficiency is becoming increasingly apparent in crops, especially for ureide-transporting woody perennials, but its physiological role is poorly understood. We evaluated the concentrations of ureides, amino acids, and organic acids in photosynthetic foliar tissue from Ni-sufficient (Ni-S) versus Ni-deficient (Ni-D) pecan (Carya illinoinensis [Wangenh.] K. Koch). Foliage of Ni-D pecan seedlings exhibited metabolic disruption of nitrogen metabolism via ureide catabolism, amino acid metabolism, and ornithine cycle intermediates. Disruption of ureide catabolism in Ni-D foliage resulted in accumulation of xanthine, allantoic acid, ureidoglycolate, and citrulline, but total ureides, urea concentration, and urease activity were reduced. Disruption of amino acid metabolism in Ni-D foliage resulted in accumulation of glycine, valine, isoleucine, tyrosine, tryptophan, arginine, and total free amino acids, and lower concentrations of histidine and glutamic acid. Ni deficiency also disrupted the citric acid cycle, the second stage of respiration, where Ni-D foliage contained very low levels of citrate compared to Ni-S foliage. Disruption of carbon metabolism was also via accumulation of lactic and oxalic acids. The results indicate that mouse-ear, a key morphological symptom, is likely linked to the toxic accumulation of oxalic and lactic acids in the rapidly growing tips and margins of leaflets. Our results support the role of Ni as an essential plant nutrient element. The magnitude of metabolic disruption exhibited in Ni-D pecan is evidence of the existence of unidentified physiological roles for Ni in pecan.
Environmental Entomology | 2003
David I. Shapiro-Ilan; Wayne A. Gardner; James R. Fuxa; Bruce W. Wood; Khuong B. Nguyen; Byron J. Adams; Richard A. Humber; Michael J. Hall
Abstract The pecan weevil, Curculio caryae (Horn), is a major pest of pecans in the Southeastern United States. Entomopathogenic nematodes and fungi are potential alternatives to chemical insecticides for C. caryae control. Our objective was to survey pecan orchards in the southeastern United States for entomopathogenic nematodes and fungi and determine the virulence of the new isolates to C. caryae larvae. Soil was collected from 105 sites in 21 orchards in Arkansas, Georgia, Louisiana, and Mississippi. Entomopathogens were isolated by exposing soil to C. caryae and greater wax moth larvae, Galleria mellonella, (L.). We isolated entomopathogenic fungi and nematodes from 16 and 6 of the 21 orchards surveyed, respectively. The entomopathogenic fungi included Beauveria bassiana (Balsamo) Vuillemin and Metarhizium anisopliae (Metschnikoff) Sorokin, and nematodes included Heterorhabditis bacteriophora Poinar, Steinernema carpocapsae (Weiser), Steinernema glaseri (Steiner), and Steinernema rarum (Doucet). This is the first report of Steinernema rarum in the United States. Soil characteristics in orchards were analyzed for pH, organic matter, and nutrients; we detected a negative relationship between fungal occurrence and manganese levels in soil and a positive relationship between M. anisopliae occurrence and calcium or magnesium levels. In laboratory assays, virulence of 15 nematode and 22 fungal isolates to C. caryae larvae was tested in small plastic cups containing soil. Results indicated poor susceptibility of the C. caryae larvae to entomopathogenic nematodes. Several fungal isolates that caused significantly higher mortality in C. caryae larvae than other strains (including a commercial strain of B. bassiana) should be investigated further as potential control agents of C. caryae.
Journal of Economic Entomology | 2002
Ted E. Cottrell; Bruce W. Wood; Charles C. Reilly
Abstract Three species of aphids attack pecan foliage, Carya illinoensis (Wang.) K. Koch, and cause economic damage. We tested a kaolin-based particle film against one of these aphid species, black pecan aphid, Melanocallis caryaefoliae (Davis). Effect of particle film on host selection, adult mortality, and production of nymphs by M. caryaefoliae was tested on seedling pecans in the laboratory. Fewer M. caryaefoliae adults selected treated foliage compared with untreated foliage. A higher percentage of adults that did select treated foliage were recovered from upper leaf surfaces compared with the percentage of adults recovered from upper leaf surfaces of untreated leaves. Observations with a microscope revealed an accumulation of particle film on aphid body parts, especially on tarsi, and strongly suggests that aphid mobility was restricted. Adult mortality was higher on treated foliage and led to an overall decrease in production of nymphs on those seedlings. In addition, we measured spectral properties of treated seedling pecan foliage. Light reflectance by treated foliage was increased and absorptance decreased compared with control foliage whereas transmittance of light through control and particle film-treated leaves was similar. We did not detect any phytotoxic effect on pecan due to application of particle film.
Journal of Invertebrate Pathology | 2002
David I. Shapiro-Ilan; Charles C. Reilly; Michael W. Hotchkiss; Bruce W. Wood
Our objectives were to determine the (1) natural variation in fungicide resistance among Beauveria bassiana strains, (2) potential to increase fungicide resistance in B. bassiana through artificial selection, and (3) stability of virulence in selected B. bassiana strains. Fungicides included dodine, fenbuconazole, and triphenyltin hydroxide, which are commonly used in pecan and other horticultural crops. Comparison of seven B. bassiana strains indicated some are substantially more resistant to fungicides than others; a commercial strain (GHA) was less resistant than all wild strains isolated from pecan orchards. Artificial selection resulted in enhanced fungicide resistance in the GHA strain but not in a mixed wild strain. Removal of selection pressure for three passages did not reduce the enhanced fungicide resistance. Sub-culturing with exposure to fungicides did not affect the GHA strains virulence to pecan weevil, Curculio caryae, larvae, whereas fungicide exposure increased virulence in a mixed wild population of B. bassiana.
Journal of Entomological Science | 2000
Ted E. Cottrell; Carroll E. Yonce; Bruce W. Wood
Euschistus servus (Say) and E. tristigmus (Say) were monitored near and in pecan orchards at ground level only and in pecan orchards from the ground to the upper canopy. Modified pyramidal traps, baited with Euschistus spp. aggregation pheromone, were placed on the ground along a hedgerow adjacent to a pecan orchard, at the orchard edge, and at the orchard center to monitor seasonal occurrence. Vertical distribution of E. servus and E. tristigmus was monitored by placing pheromone-baited traps at preselected heights. Traps on the ground along the hedgerow, orchard edge, and orchard center captured similar numbers of stink bugs each month from May through September, with an increase in October at all locations (combined data for both species). Single traps placed at different heights captured peak numbers of E. servus in early and late season; whereas, traps captured peak numbers of E. tristigmus during the late season. More E. servus were captured in traps on the ground than in traps in the canopy, but mo...
Journal of Economic Entomology | 2011
David I. Shapiro-Ilan; Ted E. Cottrell; Bruce W. Wood
ABSTRACT The pecan weevil, Curculio caryae (Horn), is a key pest of pecan [Carya illinoinensis (Wangenh.) K. Koch], Current control recommendations are based on chemical insecticide applications. Microbial control agents such as the entomopathogenic nematode, Steinernema carpocapsae (Weiser) and the fungus Beauveria bassiana (Balsamo) Vuillemin occur naturally in southeastern U.S. pecan orchards and have shown promise as alternative control agents for C. caryae. Conceivably, the chemical and microbial agents occur simultaneously within pecan orchards or might be applied concurrently. The objective of this study was to determine the interactions between two chemical insecticides that are used in commercial C. caryae control (i.e., carbaryl and cypermethrin applied below field rates) and the microbial agents B. bassiana and S. carpocapsae. In laboratory experiments, pecan weevil larval or adult mortality was assessed after application of microbial or chemical treatments applied singly or in combination (microbial + chemical agent). The nature of interactions (antagonism, additivity, or synergy) in terms of weevil mortality was evaluated over 9 d (larvae) or 5 d (adults). Results for B. bassiana indicated synergistic activity with carbaryl and antagonism with cypermethrin in C. caryae larvae and adults. For S. carpocapsae, synergy was detected with both chemicals in C. caryae larvae, but only additive effects were detected in adult weevils. Our results indicate that the chemical-microbial combinations tested are compatible with the exception of B. bassiana and cypermethrin. In addition, combinations that exhibited synergistic interactions may provide enhanced C. caryae control in commercial field applications; thus, their potential merits further exploration.
Environmental Entomology | 2009
Ted E. Cottrell; Bruce W. Wood; Xinzhi Ni
ABSTRACT The nature of the interaction between the black pecan aphid, Melanocallis caryaefoliae (Davis) (Hemiptera: Aphididae), and the chlorosis it causes to foliage of its pecan [Carya illinoinensis (Wangenh.) K. Koch) ] host is poorly understood. Laboratory experiments were conducted on the settling behavior of the black pecan aphid, when provided chlorotic pecan leaf discs resulting from previous black pecan aphid feeding and nonchlorotic leaf discs, under a normal photoperiod and constant dark. Additionally, aphid development from the first instar to the adult stage was examined when nymphs were either allowed to feed on the same leaf disc or moved daily to a new, nondamaged, same age leaf disc. After 24 h, a significantly higher percentage of black pecan aphids settled on chlorotic than on nonchlorotic leaf discs, regardless of photoperiod. When starting from the first instar, nymphs that were prevented from inducing leaf chlorosis by moving daily to new, same-age leaf discs took ∼5 d longer to complete development, had a shorter body length, and had higher mortality than when aphids remained on the same leaf disc. These results show that black pecan aphid-induced leaf chlorosis plays an important role in the interaction of the black pecan aphid with its pecan host.
Journal of Invertebrate Pathology | 2008
David I. Shapiro-Ilan; Ted E. Cottrell; Mark A. Jackson; Bruce W. Wood
There is need for efficacious biocontrol agents for aphids in commercial orchards. As a preliminary step to this end we determined the virulence of several Hypocreales fungi to pecan aphids. In the first experiment we tested the virulence of Isaria fumosorosea (ARSEF 3581) blastospores to three pecan aphids Monellia caryella, Melanocallis caryaefoliae, and Monelliopsis pecanis under laboratory conditions. Rates of 1x10(7) or 1x10(8) spores per ml were applied in 2 ml via a spray tower to 90 mm Petri dishes containing 10 aphids each. Mortality and mycosis were determined after 24, 48 and 72 h. Treatment effects were observed by 48 h post-application, and by 72 h the higher application rate caused >90% mortality and mycosis in M. caryella and M. caryaefoliae, whereas <70% was observed in M. pecanis. We conducted two subsequent experiments (Experiments 2 and 3), using the same methodology, to compare the virulence of several Hypocreales species and strains against the aphid of primary economic concern to most pecan growers, M. caryaefoliae. In Experiment 2, we compared blastospores and conidia of two I. fumosorosea strains (ARSEF 3581 and ATCC 20874 [= strain 97]). The blastospores of ARSEF 3581 and conidia of ATCC 20874 showed higher virulence than other treatments and thus were included in Experiment 3, which also compared the virulence of conidia of Beauveria bassiana (GHA strain) and Metarhizium anisopliae (F52 strain). Results in Experiment 3 indicated the highest virulence in I. fumosorosea 3581 blastospores and M. anisopliae (F52) followed by I. fumosorosea (20874) conidia. The detection of pathogenicity to pecan aphids establishes the potential for commercial usage and additional study. Results reported here will narrow treatments to test in future greenhouse and field trials.
Environmental Entomology | 2008
David I. Shapiro-Ilan; Wayne A. Gardner; Ted E. Cottrell; Robert W. Behle; Bruce W. Wood
Abstract The pecan weevil, Curculio caryae (Horn), is a key pest of pecans. The entomopathogenic fungus Beauveria bassiana (Balsamo) Vuillemin is pathogenic to C. caryae. One approach to managing C. caryae may be application of B. bassiana directed toward adult weevils as they emerge from the soil to attack nuts in the tree canopy. Our objective was to compare different application methods for suppression of C. caryae adults. Treatments included direct application of B. bassiana (GHA strain) to soil under the tree canopy, soil application followed by cultivation, soil application in conjunction with a cover crop (Sudan grass), direct application to the tree trunk, and application to the trunk with an UV radiation–protecting adjuvant. The study was conducted in a pecan orchard in Byron, GA, in 2005 and 2006. Naturally emerging C. caryae adults, caught after crawling to the trunk, were transported to the laboratory to determine percentage mortality and signs of mycosis. When averaged over the 15-d sampling period, weevil mortality and signs of mycosis were greater in all treatments than in the nontreated control in 2005 and 2006; >75% average mortality was observed with the trunk application both years and in the trunk application with UV protection in 2005. Results indicated trunk applications can produce superior efficacy relative to ground application, particularly if the ground application is followed by cultivation. Efficacy in the cover crop treatment, however, did not differ from other application approaches. Future research should focus on elucidating the causes for treatment differences we observed and the extent to which B. bassiana–induced C. caryae mortality reduces crop damage.
Pest Management Science | 2010
Ted E. Cottrell; Bruce W. Wood; Xinzhi Ni
BACKGROUND Black pecan aphid, Melanocallis caryaefoliae (Davis) (Hemiptera: Aphididae), feeding elicits localized chlorotic injury to pecan foliage [Carya illinoinensis (Wangenh.) K Koch] and apparent acceleration of leaf senescence and defoliation. The ability of certain plant growth regulators (PGRs) (forchlorfenuron, gibberellic acid and aviglycine) to prevent M. caryaefoliae from triggering pecan leaf chlorosis and senescence-like processes was evaluated on two dates in both 2006 and 2007. Treatments were applied to orchard foliage and used in laboratory leaf-disc bioassays to assess possible reduction in aphid-elicited chlorosis and concomitant effects on aphid mortality and development. RESULTS Foliage pretreated with forchlorfenuron + gibberellic acid prior to being challenged with aphids resulted in significantly less aphid-elicited chlorosis than did control or aviglycine-treated leaf discs. No PGR affected aphid mortality; however, development time was increased by forchlorfenuron + gibberellic acid in 2006 and by aviglycine + gibberellic acid on one date in 2007. CONCLUSION Certain PGRs possess the potential for usage on pecan to protect foliar canopies from M. caryaefoliae via changes in the susceptibility of the host leaf to senescence-like factors being introduced by feeding aphids. This protective effect on host foliage and the associated suppressive effect on development of feeding aphids might also be relevant to pest management programs on other aphid-crop systems in which aphid-elicited chlorosis and senescence-like processes can limit profitability.