Bruk Getachew
Howard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bruk Getachew.
Pharmacology, Biochemistry and Behavior | 2008
Bruk Getachew; Sheketha R. Hauser; Robert E. Taylor; Yousef Tizabi
Epidemiological studies indicate significant co-morbid expression of alcoholism, anxiety, and depression. These symptoms are often under-diagnosed and under-treated and can worsen prognostic and treatment outcome for alcoholism. Nonetheless, a causal relationship between alcoholism and these conditions is yet to be established. In this study we sought to determine the effects of daily alcohol administration on the indices of anxiety and depression in two rat strains, one of which exhibits inherent depressive-like characteristics. Moreover, it was of relevance to examine the effects of a clinically useful antidepressant on alcohol-induced behavioral changes. Wistar-Kyoto (WKY) rats derived from Wistar stock show low levels of locomotor activity in an open field and high levels of immobility in the forced swim test (FST) which is considered a measure of their helplessness and hence are considered a putative animal model of depression. Adult female WKY and Wistar rats were exposed for 3 hrs daily to 95% ethanol vapor to achieve a mean blood alcohol level (BAL) of approximately 150 mg/dL. Controls were exposed to air in similar inhalation chambers. Sixteen to 18 hrs following 7 or 14 days of exposure to alcohol, locomotor activity (LCA) in open field, duration of time spent in the open arm of the elevated plus-maze (EPM), reflective of anxiety-like behavior and immobility in FST were evaluated. Alcohol exposure for 7 or 14 days reduced LCA only in Wistar rats but enhanced FST immobility in both strains at both time points. Only 14 day alcohol exposure reduced EPM open arm time in both WKY and Wistar rats. Daily treatment with desipramine (8 mg/kg) blocked all the changes induced by alcohol in both strains. Thus, subchronic (7 day) exposure to alcohol induces depressive-like characteristics in Wistar rats and exacerbates that of WKY rats. Chronic (14 day) exposure, however, also induces an anxiety-like effect in both strains. The depressive- and anxiety-like behaviors induced by alcohol were blocked by daily treatment with a tricyclic antidepressant. It may be suggested that prophylactic treatment of alcoholics with an antidepressant prior to detoxification may improve treatment outcome for alcoholism.
Progress in Neuro-psychopharmacology & Biological Psychiatry | 2009
Yousef Tizabi; Bruk Getachew; Amir H. Rezvani; Sheketha R. Hauser; David H. Overstreet
A strong positive association between depression and alcoholism is evident in epidemiological studies. Curiously, the incidence of smoking (nicotine intake) is also very high among depressed individuals. Because neuronal nicotinic receptors have been implicated in mood regulation as well as in reinforcing effects of alcohol, it was of interest to determine whether inherent changes in these receptors may be manifested in an animal model that expresses both depressive-like characteristics and high alcohol intake. Thus, Fawn-Hooded (FH) rats along with their control ACI rats were used to measure the density of the high affinity nicotinic receptor in discrete brain regions. Furthermore, the effects of acute and chronic nicotine on depressive-like characteristics of FH rats were also evaluated. Measurements of [(3)H]cytisine binding (selective for alpha4beta2 nicotinic receptor subtype) revealed a reduction in these receptors only in the striatum of FH rats, a result very similar to that observed in selectively-bred alcohol-preferring (P) rats. Administration of nicotine acutely (0.4 mg/kg, sc) resulted in a significant reduction of immobility in the forced swim test (FST) in FH rats only, implying an antidepressant-like effect of nicotine. Another group of FH rats were administered 0.4 mg/kg nicotine (daily, sc) for 14 days and their behavior in the FST was evaluated 22-24 h after the last injection. In this case, nicotine also had a significant antidepressant-like effect in FH rats suggesting no tolerance to nicotine had occurred. The effects of nicotine on FST behavior are very similar to those observed in Flinders Sensitive Line rats, a putative animal model of depression. Together, these findings provide additional evidence for antidepressant-like effects of nicotine and strengthen the postulated association between striatal nicotinic receptors and high alcohol intake. Thus, nicotinic receptors could be suitable targets for the development of novel pharmacotherapy for treatment of depression and possibly alcoholism.
Brain Research | 2005
Edward D. Levin; Yousef Tizabi; Amir H. Rezvani; D. Patrick Caldwell; Ann Petro; Bruk Getachew
Chronic nicotine administration has long been known to increase the number of high-affinity alpha4beta2 nicotinic receptors with lesser effects on low-affinity alpha7 nicotinic receptors. Nicotine has been shown to promote the release of a variety of neurotransmitters including glutamate. Nicotine may also interact directly with the glutamatergic receptors. Nicotinic-glutamate interactions may be critical to the long-term effects of nicotine. Conversely, glutamatergic drugs may interact with the nicotinic system. Such interactions have important implications in interpretation of the mechanism of drug actions, especially when the drugs are given together. The current study examined the effects of chronic administration of nicotine (5 mg of the nicotine base/kg/day for 28 days), dizocilpine (MK-801) (0.3 mg/kg/day for 28 days), an NMDA receptor antagonist, as well as the combination of the two drugs on nicotinic and NMDA receptor densities in discrete brain regions. The chronic dose of dizocilpine used was behaviorally active causing a dramatic reduction in prepulse inhibition (PPI) of acoustic startle response. The nicotine dose used did not significantly affect PPI but previously we have found it to be behaviorally active in improving working memory function. High-affinity nicotinic receptor binding, as has been seen previously, was significantly increased by chronic nicotine in most areas. Chronic dizocilpine alone did not affect high-affinity nicotinic receptor binding, but it did modify the effects of chronic nicotine, attenuating nicotine-induced increases in the frontal cortex and striatum. Low-affinity nicotinic binding was significantly increased by chronic nicotine in only one area, the cerebellum. Chronic dizocilpine significantly increased low-affinity nicotinic binding in several brain areas, the colliculi, hippocampus, and the hypothalamus. The combination of nicotine and dizocilpine attenuated the effects of each with diminished nicotine-induced increased nicotinic low-affinity binding in the cerebellum and diminished dizocilpine-induced increased nicotinic low-affinity binding in the hippocampus and hypothalamus. In contrast, chronic nicotine and dizocilpine had a mutually potentiating effect of increasing nicotinic low-affinity binding in the frontal cortex. NMDA receptor binding was affected only in the hippocampus, where both dizocilpine and nicotine significantly increased binding. Chronic nicotine effects on receptor regulation are significantly affected by concurrent blockade of NMDA glutamate receptors.
Pharmacology, Biochemistry and Behavior | 2010
Bruk Getachew; Sheketha R. Hauser; Robert E. Taylor; Yousef Tizabi
Although strong positive association between alcoholism and depression is a common epidemiological observance, the causal relationship and the neurobiological substrates of such observations are far from clear. We have reported that chronic daily exposure to a relatively high dose of alcohol in rats can induce or exacerbate an already existing depressive-like behavior (Pharm Biochem Behav 91:97-103, 2008). Moreover, these effects of alcohol were blocked by pretreatment with desipramine, a tricyclic antidepressant, implicating a role for the biogenic amines in this type of depressive symptoms. In order to further delineate the involvement of specific neurotransmitters in alcohol-induced depressive symptoms, we examined the concentrations of norepinephrine (NE), dopamine (DA) and serotonin (5-HT) in the frontal cortex and hippocampus following alcohol administration as well as pretreatment with two antidepressants, nomifensine and imipramine selective NE/DA and NE/5-HT uptake inhibitors, respectively. Adult female Wistar and Wistar-Kyoto (WKY) rats were exposed to alcohol via inhalation chambers (3h/day for 10 days) to achieve daily blood alcohol concentration of approximately 150 mg%. On day 11, the animals were evaluated for general locomotor activity (LCA) and performance in the forced swim test (FST), followed by neurochemical analyses. As expected WKY rats had lower LCA and higher immobility in the FST compared to Wistar rats. WKY rats also had lower levels of all three biogenic amines compared to Wistar rats in both areas. However, only cortical NE was reduced in both strains following alcohol administration. Treatments with nomifensine and imipramine blocked the behavioral and most of the neurochemical deficits caused by alcohol in both strains. These results implicate cortical NE as a major player in alcohol-induced depression. Moreover, it is suggested that selective NE uptake inhibitors may be of particular therapeutic potential in co-morbid condition of alcoholism and depression.
Progress in Neuro-psychopharmacology & Biological Psychiatry | 2008
Amir H. Rezvani; Yousef Tizabi; Bruk Getachew; Sheketha R. Hauser; D. Patrick Caldwell; Christopher Hunter; Edward D. Levin
Blockade of NMDA glutamate receptors with dizocilpine (MK-801) has been shown to cause substantial cognitive deficits and has been used to model symptoms of schizophrenia. Nicotine or nicotinic agonists, in contrast, may enhance cognitive or attentional functions and be of therapeutic potential in schizophrenia. Nicotinic-glutamatergic interactions, therefore, may have important implications in cognitive functions and antipsychotic treatments. Clozapine, a widely used antipsychotic drug, has been shown in some studies to be effective in ameliorating the cognitive deficits associated with schizophrenia. However, there is some evidence to suggest that clozapine similar to haloperidol may impair sustained attention in rats. In this study, we sought to determine whether chronic nicotine or dizocilpine may modify the effects of acute clozapine on attentional parameters and whether the behavioral effects would correlate with nicotinic or NMDA receptor densities in discrete brain regions. Adult female rats trained on an operant visual signal detection task were given 4 weeks of nicotine (5 mg/kg/day), dizocilpine (0.15 mg/kg/day), the same doses of both nicotine and dizocilpine as a mixture, or saline by osmotic minipump. While on chronic treatment, rats received acute injections of various doses of clozapine (0, 0.625, 1.25, 2.5 mg/kg, sc) 10 min prior to tests on attentional tasks. The pumps were removed on day 28 and 24 h later the animals were sacrificed for measurements of receptor densities in specific brain regions. The percent correct hit as a measure of sustained attention was significantly impaired by clozapine in a dose-related manner. Neither chronic nicotine nor dizocilpine affected this measure on their own or modified the effects of clozapine. Both nicotine and dizocilpine affected the receptor bindings in a region specific manner and their combination further modified the effects of each other in selective regions. Attentional performance was inversely correlated with alpha-bungarotoxin binding in the frontal cortex only. In conclusion, the data suggest attentional impairments with clozapine alone and no modification of this effect with nicotine or dizocilpine. Moreover, cortical low affinity nicotinic receptors may have a role in attentional functions.
Neurotoxicity Research | 2017
Sridharan Manavalan; Bruk Getachew; Kebreten F. Manaye; Syed J. Khundmiri; Antonei B. Csoka; Raechel McKinley; Andrea Tamas; Dora Reglodi; Yousef Tizabi
The detrimental effects of heavy drinking and smoking are multiplied when the two are combined. Treatment modalities for each and especially for the combination are very limited. Although in low concentration, alcohol and nicotine, each may have beneficial effects including neuroprotection, their combination, instead of providing additive protection, may actually lead to toxicity in cell cultures. Pituitary adenylate cyclase-activating polypeptide (PACAP) is an endogenous 38 amino-acid peptide with demonstrated protection against neuronal injury, trauma as well as various endogenous and exogenous toxic agents. The aim of this study was to investigate whether PACAP may also protect against toxicity induced by high alcohol, high nicotine, or the combination of low alcohol and nicotine concentrations, and if so, whether this effect was mediated via PAC1 receptor. We used the neuroblastoma-derived SH-SY5Y cells and applied various colorimetric assays for determination of cell viability or toxicity. Results indicate that PACAP blocks toxicity induced by high alcohol and high nicotine as well as their combination at low concentrations. The effects of PACAP in turn were blocked by the PACAP antagonist (PACAP 6-38), indicating involvement of the PACAP receptor PAC1 and possibly vasoactive intestinal peptide (VIP) receptors in PACAP’s protection. Moreover, no combined toxicity of low alcohol and low nicotine could be detected in calcium-free medium. These findings suggest possible beneficial effects of PACAP in preventing alcohol and nicotine toxicity and that calcium contributes to the damage induced by combination of low alcohol and nicotine in SH-SY5Y cells.
Neuroscience Letters | 2018
Jana Ruda-Kucerova; Zuzana Babinská; Matej Luptak; Bruk Getachew; Yousef Tizabi
The devastating consequences of alcohol-use disorder (AUD) on the individual and the society are well established. Current treatments of AUD encompass various strategies, all of which have only modest effectiveness. Hence, there is a critical need to develop more efficacious therapies. Recently, specific glutamatergic receptors have been identified as potential novel targets for intervention in AUD. Thus, the current study was designed to evaluate the effects of acute administration of sub-anesthetic doses of ketamine, an NMDA receptor antagonist, as well as NBQX, an AMPA/kainate receptor antagonist on alcohol intake and its possible behavioural consequences. Adult male Wistar rats were trained in drinking in dark paradigm (3 weeks), and following stable alcohol intake, ketamine, NBQX as well as their combination were injected prior to a 90 min drinking session. In addition to alcohol intake, sucrose preference (overnight), and locomotor activity and forced swim test (FST) were also evaluated before and following alcohol intake. Both doses of ketamine (5 and 10 mg/kg) and NBQX (5 and 10 mg/kg) significantly attenuated percent alcohol intake. The combination of the higher dose of ketamine and NBQX, however, did not significantly affect percent alcohol intake. Moreover, animals exposed to alcohol showed decreased sucrose intake (reflective of anhedonia), decreased locomotor activity and swimming in the FST (reflective of helplessness), that were not affected by ketamine and/or NBQX. These results suggest that selective antagonism of the NMDA or AMPA/kainate receptors may be of therapeutic potential in AUD.
Drug and Alcohol Dependence | 2017
Bruk Getachew; Sheketha R. Hauser; Antonei B. Csoka; Robert E. Taylor; Yousef Tizabi
INTRODUCTION Although a role for alpha-2 adrenoceptors (alpha-2 ARs) in alcohol use disorder (AUD) and depression is suggested, very little information on a direct interaction between alcohol and these receptors is available. METHODS In this study adult female Wistar and Wistar-Kyoto (WKY) rats, a putative animal model of depression, were exposed to alcohol vapor 3h daily for 10days (blood alcohol concentration ∼150mg%) followed by daily injection of 10mg/kg of imipramine (IMP, a selective norepinephrine NE/serotonin reuptake inhibitor) or nomifensine (NOMI, a selective NE/dopamine reuptake inhibitor). On day 11 animals were tested for open field locomotor activity (OFLA) and forced swim test (FST) and were sacrificed 2h later for measurement of alpha-2 ARs densities in the frontal cortex and hippocampus using [3H]RX 821002 as the specific ligand. RESULTS Chronic alcohol treatment increased the immobility in the FST, without affecting OFLA in both Wistar and WKY rats, suggesting induction of depressive-like behavior in Wistar rats and an exacerbation of this behavior in WKY rats. Alcohol treatment also resulted in an increase in cortical but not hippocampal alpha-2 ARs densities in both Wistar and WKY rats. The behavioral effects of alcohol were completely blocked by IMP and NOMI and the neurochemical effects (increases in alpha-2 ARs) were significantly attenuated by both drugs in both strains. CONCLUSIONS The results suggest a role for cortical alpha-2 ARs in alcohol withdrawal-induced depression and that selective subtype antagonists of these receptors may be of adjunct therapeutic potential in AUD-depression co-morbidity.
Neuroscience Letters | 2018
Amir H. Rezvani; Yousef Tizabi; Susan Slade; Bruk Getachew; Edward D. Levin
Smoking cessation strategies are of prime medical importance. Despite availability of various pharmacological agents in combating addiction to nicotine, more effective medications are needed. Based on recent findings, the glutamatergic system in the brain may provide novel targets. Here, we evaluated the effects of acute administration of sub-anesthetic doses of ketamine, an NMDA receptor antagonist, in both male and female Sprague-Dawley rats trained to self-administer nicotine. Animals were injected subcutaneously with 5, 7.5 and 10 mg/kg ketamine or saline and the effects on the number of intravenous nicotine infusions during a 45 min session was measured. Ketamine treatment significantly reduced nicotine self-administration in a dose-dependent manner. Moreover, a differential sensitivity between the sexes was observed as male rats responded to a lower dose of ketamine and with higher magnitude of effect than female rats. It is concluded that glutamatergic receptor manipulations may offer a novel and potentially sex-dependent intervention in nicotine addiction.
Comparative and Functional Genomics | 2018
Riya R. Kanherkar; Bruk Getachew; Joseph Ben-Sheetrit; Sudhir Varma; Thomas Heinbockel; Yousef Tizabi; Antonei B. Csoka
Commonly used pharmaceutical drugs might alter the epigenetic state of cells, leading to varying degrees of long-term repercussions to human health. To test this hypothesis, we cultured HEK-293 cells in the presence of 50 μM citalopram, a common antidepressant, for 30 days and performed whole-genome DNA methylation analysis using the NimbleGen Human DNA Methylation 3x720K Promoter Plus CpG Island Array. A total of 626 gene promoters, out of a total of 25,437 queried genes on the array (2.46%), showed significant differential methylation (p < 0.01); among these, 272 were hypomethylated and 354 were hypermethylated in treated versus control. Using Ingenuity Pathway Analysis, we found that the chief gene networks and signaling pathways that are differentially regulated include those involved in nervous system development and function and cellular growth and proliferation. Genes implicated in depression, as well as genetic networks involving nucleic acid metabolism, small molecule biochemistry, and cell cycle regulation were significantly modified. Involvement of upstream regulators such as BDNF, FSH, and NFκB was predicted based on differential methylation of their downstream targets. The study validates our hypothesis that pharmaceutical drugs can have off-target epigenetic effects and reveals affected networks and pathways. We view this study as a first step towards understanding the long-term epigenetic consequences of prescription drugs on human health.