Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bruna Barneda-Zahonero is active.

Publication


Featured researches published by Bruna Barneda-Zahonero.


Cell Death and Disease | 2011

Induction of ER stress in response to oxygen-glucose deprivation of cortical cultures involves the activation of the PERK and IRE-1 pathways and of caspase-12

Nahuai Badiola; C Penas; Alfredo J. Miñano-Molina; Bruna Barneda-Zahonero; Rut Fadó; G Sánchez-Opazo; Joan X. Comella; Josefa Sabrià; Changlian Zhu; Klas Blomgren; C Casas; José Rodríguez-Alvarez

Disturbance of calcium homeostasis and accumulation of misfolded proteins in the endoplasmic reticulum (ER) are considered contributory components of cell death after ischemia. However, the signal-transducing events that are activated by ER stress after cerebral ischemia are incompletely understood. In this study, we show that caspase-12 and the PERK and IRE pathways are activated following oxygen-glucose deprivation (OGD) of mixed cortical cultures or neonatal hypoxia–ischemia (HI). Activation of PERK led to a transient phosphorylation of eIF2α, an increase in ATF4 levels and the induction of gadd34 (a subunit of an eIF2α-directed phosphatase). Interestingly, the upregulation of ATF4 did not lead to an increase in the levels of CHOP. Additionally, IRE1 activation was mediated by the increase in the processed form of xbp1, which would be responsible for the observed expression of edem2 and the increased levels of the chaperones GRP78 and GRP94. We were also able to detect caspase-12 proteolysis after HI or OGD. Processing of procaspase-12 was mediated by NMDA receptor and calpain activation. Moreover, our data suggest that caspase-12 activation is independent of the unfolded protein response activated by ER stress.


Journal of Biological Chemistry | 2011

Soluble Oligomers of Amyloid-β Peptide Disrupt Membrane Trafficking of α-Amino-3-hydroxy-5-methylisoxazole-4-propionic Acid Receptor Contributing to Early Synapse Dysfunction

Alfredo J. Miñano-Molina; Judit España; Elsa Martín; Bruna Barneda-Zahonero; Rut Fadó; Montse Solé; Ramon Trullas; Carlos A. Saura; José Rodríguez-Alvarez

β-Amyloid (Aβ), a peptide generated from the amyloid precursor protein, is widely believed to underlie the pathophysiology of Alzheimer disease (AD). Emerging evidences suggest that soluble Aβ oligomers adversely affect synaptic function, leading to cognitive failure associated with AD. The Aβ-induced synaptic dysfunction has been attributed to the synaptic removal of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors (AMPARs). However, the molecular mechanisms underlying the loss of AMPAR induced by Aβ at synapses are largely unknown. In this study we have examined the effect of Aβ oligomers on phosphorylated GluA1 at serine 845, a residue that plays an essential role in the trafficking of AMPARs toward extrasynaptic sites and the subsequent delivery to synapses during synaptic plasticity events. We found that Aβ oligomers reduce basal levels of Ser-845 phosphorylation and surface expression of AMPARs affecting AMPAR subunit composition. Aβ-induced GluA1 dephosphorylation and reduced receptor surface levels are mediated by an increase in calcium influx into neurons through ionotropic glutamate receptors and activation of the calcium-dependent phosphatase calcineurin. Moreover, Aβ oligomers block the extrasynaptic delivery of AMPARs induced by chemical synaptic potentiation. In addition, reduced levels of total and phosphorylated GluA1 are associated with initial spatial memory deficits in a transgenic mouse model of AD. These findings indicate that Aβ oligomers could act as a synaptic depressor affecting the mechanisms involved in the targeting of AMPARs to the synapses during early stages of the disease.


Molecular and Cellular Neuroscience | 2008

Estradiol facilitates neurite maintenance by a Src/Ras/ERK signalling pathway

Alfredo Miñano; Xavier Xifró; Virgili Pérez; Bruna Barneda-Zahonero; Carlos A. Saura; José Rodríguez-Álvarez

Different reports suggest the estrogens are involved in neuritic outgrowth, maintenance of dendritic morphology and spine formation in the CNS. However, the molecular mechanisms regulated by estrogens on neuronal integrity are not fully understood. We have addressed the relationship between 17beta-estradiol-dependent ERK pathway stimulation and the maintenance of neuritic morphology in cerebellar granule cell cultures (CGC). We report that 17beta-estradiol clearly activates ERK phosphorylation in CGC cultured in low potassium via ERalpha localized in the plasma membrane and without the activation of the insulin-like growth factor-I receptor. 17beta-estradiol activates the ERK pathway through Ras-dependent Src kinase activity. A concomitant activation of the cAMP-response element-binding protein (CREB) is observed. Moreover, we demonstrate that 17beta-estradiol-mediated ERK activation is involved in the maintenance of neuritic arborisation and neuronal morphology in proapoptotic conditions.


Journal of Biological Chemistry | 2012

Nurr1 Protein Is Required for N-Methyl-d-aspartic Acid (NMDA) Receptor-mediated Neuronal Survival

Bruna Barneda-Zahonero; Joan-Marc Servitja; Nahuai Badiola; Alfredo J. Miñano-Molina; Rut Fadó; Carlos A. Saura; José Rodríguez-Alvarez

Background: The mechanism involved in activity-dependent survival of neurons in the central nervous system is not fully understood. Results: Nurr1 is involved in excitatory transmission-dependent survival of glutamatergic neurons by acting downstream CREB and upstream of BDNF. Conclusion: Nurr1 activation mediates activity-dependent survival of glutamatergic neurons. Significance: A novel function of Nurr1 in activity-dependent survival of glutamatergic neurons is reported. NMDA receptor (NMDAR) stimulation promotes neuronal survival during brain development. Cerebellar granule cells (CGCs) need NMDAR stimulation to survive and develop. These neurons differentiate and mature during its migration from the external granular layer to the internal granular layer, and lack of excitatory inputs triggers their apoptotic death. It is possible to mimic this process in vitro by culturing CGCs in low KCl concentrations (5 mm) in the presence or absence of NMDA. Using this experimental approach, we have obtained whole genome expression profiles after 3 and 8 h of NMDA addition to identify genes involved in NMDA-mediated survival of CGCs. One of the identified genes was Nurr1, a member of the orphan nuclear receptor subfamily Nr4a. Our results report a direct regulation of Nurr1 by CREB after NMDAR stimulation. ChIP assay confirmed CREB binding to Nurr1 promoter, whereas CREB shRNA blocked NMDA-mediated increase in Nurr1 expression. Moreover, we show that Nurr1 is important for NMDAR survival effect. We show that Nurr1 binds to Bdnf promoter IV and that silencing Nurr1 by shRNA leads to a decrease in brain-derived neurotrophic factor (BDNF) protein levels and a reduction of NMDA neuroprotective effect. Also, we report that Nurr1 and BDNF show a similar expression pattern during postnatal cerebellar development. Thus, we conclude that Nurr1 is a downstream target of CREB and that it is responsible for the NMDA-mediated increase in BDNF, which is necessary for the NMDA-mediated prosurvival effect on neurons.


Journal of Biological Chemistry | 2012

Nurr1 is required for NMDA receptor-mediated neuronal survival

Bruna Barneda-Zahonero; Joan-Marc Servitja; Nahuai Badiola; Alfredo J. Miñano-Molina; Rut Fadó; Carlos A. Saura; José Rodríguez-Alvarez

Background: The mechanism involved in activity-dependent survival of neurons in the central nervous system is not fully understood. Results: Nurr1 is involved in excitatory transmission-dependent survival of glutamatergic neurons by acting downstream CREB and upstream of BDNF. Conclusion: Nurr1 activation mediates activity-dependent survival of glutamatergic neurons. Significance: A novel function of Nurr1 in activity-dependent survival of glutamatergic neurons is reported. NMDA receptor (NMDAR) stimulation promotes neuronal survival during brain development. Cerebellar granule cells (CGCs) need NMDAR stimulation to survive and develop. These neurons differentiate and mature during its migration from the external granular layer to the internal granular layer, and lack of excitatory inputs triggers their apoptotic death. It is possible to mimic this process in vitro by culturing CGCs in low KCl concentrations (5 mm) in the presence or absence of NMDA. Using this experimental approach, we have obtained whole genome expression profiles after 3 and 8 h of NMDA addition to identify genes involved in NMDA-mediated survival of CGCs. One of the identified genes was Nurr1, a member of the orphan nuclear receptor subfamily Nr4a. Our results report a direct regulation of Nurr1 by CREB after NMDAR stimulation. ChIP assay confirmed CREB binding to Nurr1 promoter, whereas CREB shRNA blocked NMDA-mediated increase in Nurr1 expression. Moreover, we show that Nurr1 is important for NMDAR survival effect. We show that Nurr1 binds to Bdnf promoter IV and that silencing Nurr1 by shRNA leads to a decrease in brain-derived neurotrophic factor (BDNF) protein levels and a reduction of NMDA neuroprotective effect. Also, we report that Nurr1 and BDNF show a similar expression pattern during postnatal cerebellar development. Thus, we conclude that Nurr1 is a downstream target of CREB and that it is responsible for the NMDA-mediated increase in BDNF, which is necessary for the NMDA-mediated prosurvival effect on neurons.


Molecular Biology of the Cell | 2009

Bone morphogenetic protein-6 promotes cerebellar granule neurons survival by activation of the MEK/ERK/CREB pathway.

Bruna Barneda-Zahonero; Alfredo J. Miñano-Molina; Nahuai Badiola; Rut Fadó; Xavier Xifró; Carlos A. Saura; José Rodríguez-Alvarez

Bone morphogenetic proteins (BMPs) have been implicated in the generation and postnatal differentiation of cerebellar granule cells (CGCs). Here, we examined the eventual role of BMPs on the survival of these neurons. Lack of depolarization causes CGC death by apoptosis in vivo, a phenomenon that is mimicked in vitro by deprivation of high potassium in cultured CGCs. We have found that BMP-6, but not BMP-7, is able to block low potassium-mediated apoptosis in CGCs. The neuroprotective effect of BMP-6 is not accompanied by an increase of Smad translocation to the nucleus, suggesting that the canonical pathway is not involved. By contrast, activation of the MEK/ERK/CREB pathway by BMP-6 is necessary for its neuroprotective effect, which involves inhibition of caspase activity and an increase in Bcl-2 protein levels. Other pathways involved in the regulation of CGC survival, such as the c-Jun terminal kinase and the phosphatidylinositol 3-kinase (PI3K)-Akt/PKB, were not affected by BMP-6. Moreover, failure of BMP-7 to activate the MEK/ERK/CREB pathway could explain its inability to protect CGCs from low potassium-mediated apoptosis. Thus, this study demonstrates that BMP-6 acting through the noncanonical MEK/ERK/CREB pathway plays a crucial role on CGC survival.


Scientific Reports | 2013

X-linked Inhibitor of Apoptosis Protein negatively regulates neuronal differentiation through interaction with cRAF and Trk

Rut Fadó; Rana S. Moubarak; Alfredo J. Miñano-Molina; Bruna Barneda-Zahonero; Jorge Valero; Carlos A. Saura; Julio Morán; Joan X. Comella; José Rodríguez-Alvarez

X-linked Inhibitor of apoptosis protein (XIAP) has been classically identified as a cell death regulator. Here, we demonstrate a novel function of XIAP as a regulator of neurite outgrowth in neuronal cells. In PC12 cells, XIAP overexpression prevents NGF-induced neuronal differentiation, whereas NGF treatment induces a reduction of endogenous XIAP levels concomitant with the induction of neuronal differentiation. Accordingly, downregulation of endogenous XIAP protein levels strongly increases neurite outgrowth in PC12 cells as well as axonal and dendritic length in primary cortical neurons. The effects of XIAP are mediated by the mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinases (ERKs) pathway since blocking this pathway completely prevents the neuritogenesis mediated by XIAP downregulation. In addition, we found that XIAP binds to cRaf and Trk receptors. Our results demonstrate that XIAP plays a new role as a negative regulator of neurotrophin-induced neurite outgrowth and neuronal differentiation in developing neurons.


Molecular Cancer | 2015

TNFα sensitizes neuroblastoma cells to FasL-, cisplatin- and etoposide-induced cell death by NF-κB-mediated expression of Fas

Koen M. O. Galenkamp; Paulina Carriba; Jorge Urresti; Laura Planells-Ferrer; Elena Coccia; Joaquín López-Soriano; Bruna Barneda-Zahonero; Rana S. Moubarak; Miguel F. Segura; Joan X. Comella

BackgroundPatients with high-risk neuroblastoma (NBL) tumors have a high mortality rate. Consequently, there is an urgent need for the development of new treatments for this condition. Targeting death receptor signaling has been proposed as an alternative to standard chemo- and radio-therapies in various tumors. In NBL, this therapeutic strategy has been largely disregarded, possibly because ~50-70% of all human NBLs are characterized by caspase-8 silencing. However, the expression of caspase-8 is detected in a significant group of NBL patients, and they could therefore benefit from treatments that induce cell death through death receptor activation. Given that cytokines, such as TNFα, are able to upregulate Fas expression, we sought to address the therapeutic relevance of co-treatment with TNFα and FasL in NBL.MethodsFor the purpose of the study we used a set of eight NBL cell lines. Here we explore the cell death induced by TNFα, FasL, cisplatin, and etoposide, or a combination thereof by Hoechst staining and calcein viability assay. Further assessment of the signaling pathways involved was performed by caspase activity assays and Western blot experiments. Characterization of Fas expression levels was achieved by qRT-PCR, cell surface biotinylation assays, and cytometry.ResultsWe have found that TNFα is able to increase FasL-induced cell death by a mechanism that involves the NF-κB-mediated induction of the Fas receptor. Moreover, TNFα sensitized NBL cells to DNA-damaging agents (i.e. cisplatin and etoposide) that induce the expression of FasL. Priming to FasL-, cisplatin-, and etoposide-induced cell death could only be achieved in NBLs that display TNFα-induced upregulation of Fas. Further analysis denotes that the high degree of heterogeneity between NBLs is also manifested in Fas expression and modulation thereof by TNFα.ConclusionsIn summary, our findings reveal that TNFα sensitizes NBL cells to FasL-induced cell death by NF-κB-mediated upregulation of Fas and unveil a new mechanism through which TNFα enhances the efficacy of currently used NBL treatments, cisplatin and etoposide.


Journal of Neurochemistry | 2016

Fas apoptosis inhibitory molecules: more than death-receptor antagonists in the nervous system.

Laura Planells-Ferrer; Jorge Urresti; Elena Coccia; Koen M. O. Galenkamp; Isabel Calleja-Yagüe; Joaquín López-Soriano; Paulina Carriba; Bruna Barneda-Zahonero; Miguel F. Segura; Joan X. Comella

The importance of death receptor (DR) signaling in embryonic development and physiological homeostasis is well established, as is the existence of several molecules that modulate DRs function, among them Fas Apoptotis Inhibitory Molecules. Although FAIM1, FAIM2, and FAIM3 inhibit Fas‐induced cell death, they are not structurally related, nor do they share expression patterns. Moreover, they inhibit apoptosis through completely different mechanisms. FAIM1 and FAIM2 protect neurons from DR‐induced apoptosis and are involved in neurite outgrowth and neuronal plasticity. FAIM1 inhibits Fas ligand‐ and tumor necrosis factor alpha‐induced apoptosis by direct interaction with Fas receptor and through the stabilization of levels of X‐linked inhibitor of apoptosis protein, a potent anti‐apoptotic protein that inhibits caspases. Low FAIM1 levels are found in Alzheimers disease, thus sensitizing neurons to tumor necrosis factor alpha and prompting neuronal loss. FAIM2 protects from Fas by direct interaction with Fas receptor, as well as by modulating calcium release at the endoplasmic reticulum through interaction with Bcl‐xL. Several studies prove the role of FAIM2 in diseases of the nervous system, such as ischemia, bacterial meningitis, and neuroblastoma. The less characterized member of the FAIM family is FAIM3, which is expressed in tissues of the digestive and urinary tracts, bone marrow and testes, and restricted to the cerebellum in the nervous system. FAIM3 protects against DR‐induced apoptosis by inducing the expression of other DR‐antagonists such as CFLAR or through the interaction with the DR‐adaptor protein Fas‐associated via death domain. FAIM3 null mouse models reveal this protein as an important mediator of inflammatory autoimmune responses such as those triggered in autoimmune encephalomyelitis. Given the differences between FAIMs and the variety of processes in which they are involved, here we sought to provide a concise review about these molecules and their roles in the physiology and pathology of the nervous system.


Journal of Biological Chemistry | 2016

Lifeguard Inhibits Fas Ligand-mediated Endoplasmic Reticulum-Calcium Release Mandatory for Apoptosis in Type II Apoptotic Cells.

Jorge Urresti; Marisol Ruiz-Meana; Elena Coccia; Juan Carlos Arévalo; José Castellano; Celia Fernandez-Sanz; Koen M. O. Galenkamp; Laura Planells-Ferrer; Rana S. Moubarak; Núria Llecha-Cano; Stéphanie Reix; David Garcia-Dorado; Bruna Barneda-Zahonero; Joan X. Comella

Death receptors are members of the tumor necrosis factor receptor superfamily involved in the extrinsic apoptotic pathway. Lifeguard (LFG) is a death receptor antagonist mainly expressed in the nervous system that specifically blocks Fas ligand (FasL)-induced apoptosis. To investigate its mechanism of action, we studied its subcellular localization and its interaction with members of the Bcl-2 family proteins. We performed an analysis of LFG subcellular localization in murine cortical neurons and found that LFG localizes mainly to the ER and Golgi. We confirmed these results with subcellular fractionation experiments. Moreover, we show by co-immunoprecipitation experiments that LFG interacts with Bcl-XL and Bcl-2, but not with Bax or Bak, and this interaction likely occurs in the endoplasmic reticulum. We further investigated the relationship between LFG and Bcl-XL in the inhibition of apoptosis and found that LFG protects only type II apoptotic cells from FasL-induced death in a Bcl-XL dependent manner. The observation that LFG itself is not located in mitochondria raises the question as to whether LFG in the ER participates in FasL-induced death. Indeed, we investigated the degree of calcium mobilization after FasL stimulation and found that LFG inhibits calcium release from the ER, a process that correlates with LFG blockage of cytochrome c release to the cytosol and caspase activation. On the basis of our observations, we propose that there is a required step in the induction of type II apoptotic cell death that involves calcium mobilization from the ER and that this step is modulated by LFG.

Collaboration


Dive into the Bruna Barneda-Zahonero's collaboration.

Top Co-Authors

Avatar

Joan X. Comella

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Alfredo J. Miñano-Molina

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Carlos A. Saura

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

José Rodríguez-Alvarez

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Elena Coccia

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Laura Planells-Ferrer

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Rana S. Moubarak

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Rut Fadó

Instituto de Salud Carlos III

View shared research outputs
Top Co-Authors

Avatar

Nahuai Badiola

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Joaquín López-Soriano

Autonomous University of Barcelona

View shared research outputs
Researchain Logo
Decentralizing Knowledge