Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bruna Cunha de Alencar is active.

Publication


Featured researches published by Bruna Cunha de Alencar.


Infection and Immunity | 2006

Distinct Kinetics of Effector CD8+ Cytotoxic T Cells after Infection with Trypanosoma cruzi in Naïve or Vaccinated Mice

Fanny Tzelepis; Bruna Cunha de Alencar; Marcus L. O. Penido; Ricardo T. Gazzinelli; Pedro M. Persechini; Mauricio M. Rodrigues

ABSTRACT The kinetics of effector CD8+-T-cell responses to specific Trypanosoma cruzi epitopes was investigated after challenge. Our results suggest that the delayed kinetics differs from that observed in other microbial infections and facilitates the establishment of the disease in naïve mice. In contrast, in vaccinated mice, the swift CD8+-T-cell response helps host survival after challenge.


Infection and Immunity | 2009

Perforin and Gamma Interferon Expression Are Required for CD4+ and CD8+ T-Cell-Dependent Protective Immunity against a Human Parasite, Trypanosoma cruzi, Elicited by Heterologous Plasmid DNA Prime-Recombinant Adenovirus 5 Boost Vaccination

Bruna Cunha de Alencar; Pedro M. Persechini; Filipe A. Haolla; Gabriel de Oliveira; Jaline Coutinho Silverio; Joseli Lannes-Vieira; Alexandre V. Machado; Ricardo T. Gazzinelli; Oscar Bruña-Romero; Mauricio M. Rodrigues

ABSTRACT A heterologous prime-boost strategy using plasmid DNA, followed by replication-defective recombinant adenovirus 5, is being proposed as a powerful way to elicit CD4+ and CD8+ T-cell-mediated protective immunity against intracellular pathogens. We confirmed this concept and furthered existing research by providing evidence that the heterologous prime-boost regimen using the gene encoding amastigote surface protein 2 elicited CD4+ and CD8+ T-cell-mediated protective immunity (reduction of acute parasitemia and prolonged survival) against experimental infection with Trypanosoma cruzi. Protective immunity correlated with the presence of in vivo antigen-specific cytotoxic activity prior to challenge. Based on this, our second goal was to determine the outcome of infection after heterologous prime-boost immunization of perforin-deficient mice. These mice were highly susceptible to infection. A detailed analysis of the cell-mediated immune responses in immunized perforin-deficient mice showed an impaired gamma interferon (IFN-γ) secretion by immune spleen cells upon restimulation in vitro with soluble recombinant antigen. In spite of a normal numeric expansion, specific CD8+ T cells presented several functional defects detected in vivo (cytotoxicity) and in vitro (simultaneous expression of CD107a/IFN-γ or IFN-γ/tumor necrosis factor alpha) paralleled by a decreased expression of CD44 and KLRG-1. Our final goal was to determine the importance of IFN-γ in the presence of highly cytotoxic T cells. Vaccinated IFN-γ-deficient mice developed highly cytotoxic cells but failed to develop any protective immunity. Our study thus demonstrated a role for perforin and IFN-γ in a number of T-cell-mediated effector functions and in the antiparasitic immunity generated by a heterologous plasmid DNA prime-adenovirus boost vaccination strategy.


Journal of Immunology | 2008

Infection with Trypanosoma cruzi Restricts the Repertoire of Parasite-Specific CD8+ T Cells Leading to Immunodominance

Fanny Tzelepis; Bruna Cunha de Alencar; Marcus L. O. Penido; Carla Claser; Alexandre V. Machado; Oscar Bruna-Romero; Ricardo T. Gazzinelli; Mauricio M. Rodrigues

Interference or competition between CD8+ T cells restricted by distinct MHC-I molecules can be a powerful means to establish an immunodominant response. However, its importance during infections is still questionable. In this study, we describe that following infection of mice with the human pathogen Trypanosoma cruzi, an immunodominant CD8+ T cell immune response is developed directed to an H-2Kb-restricted epitope expressed by members of the trans-sialidase family of surface proteins. To determine whether this immunodominance was exerted over other non-H-2Kb-restricted epitopes, we measured during infection of heterozygote mice, immune responses to three distinct epitopes, all expressed by members of the trans-sialidase family, recognized by H-2Kb-, H-2Kk-, or H-2Kd-restricted CD8+ T cells. Infected heterozygote or homozygote mice displayed comparably strong immune responses to the H-2Kb-restricted immunodominant epitope. In contrast, H-2Kk- or H-2Kd-restricted immune responses were significantly impaired in heterozygote infected mice when compared with homozygote ones. This interference was not dependent on the dose of parasite or the timing of infection. Also, it was not seen in heterozygote mice immunized with recombinant adenoviruses expressing T. cruzi Ags. Finally, we observed that the immunodominance was circumvented by concomitant infection with two T. cruzi strains containing distinct immunodominant epitopes, suggesting that the operating mechanism most likely involves competition of T cells for limiting APCs. This type of interference never described during infection with a human parasite may represent a sophisticated strategy to restrict priming of CD8+ T cells of distinct specificities, avoiding complete pathogen elimination by host effector cells, and thus favoring host parasitism.


Infection and Immunity | 2005

CD8+-T-Cell-Dependent Control of Trypanosoma cruzi Infection in a Highly Susceptible Mouse Strain after Immunization with Recombinant Proteins Based on Amastigote Surface Protein 2

Adriano F. Araújo; Bruna Cunha de Alencar; José Ronnie Vasconcelos; Meire I. Hiyane; Claudio R. F. Marinho; Marcus L. O. Penido; Silvia Beatriz Boscardin; Daniel F. Hoft; Ricardo T. Gazzinelli; Mauricio M. Rodrigues

ABSTRACT We previously described that DNA vaccination with the gene encoding amastigote surface protein 2 (ASP-2) protects approximately 65% of highly susceptible A/Sn mice against the lethal Trypanosoma cruzi infection. Here, we explored the possibility that bacterial recombinant proteins of ASP-2 could be used to improve the efficacy of vaccinations. Initially, we compared the protective efficacy of vaccination regimens using either a plasmid DNA, a recombinant protein, or both sequentially (DNA priming and protein boosting). Survival after the challenge was not statistically different among the three mouse groups and ranged from 53.5 to 75%. The fact that immunization with a recombinant protein alone induced protective immunity revealed the possibility that this strategy could be pursued for vaccination. We investigated this possibility by using six different recombinant proteins representing distinct portions of ASP-2. The vaccination of mice with glutathione S-transferase fusion proteins representing amino acids 261 to 500 or 261 to 380 of ASP-2 in the presence of the adjuvants alum and CpG oligodeoxynucleotide 1826 provided remarkable immunity, consistently protecting 100% of the A/Sn mice. Immunity was completely reversed by the in vivo depletion of CD8+ T cells, but not CD4+ T cells, and was associated with the presence of CD8+ T cells specific for an epitope located between amino acids 320 and 327 of ASP-2. We concluded that a relatively simple formulation consisting of a recombinant protein with a selected portion of ASP-2, alum, and CpG oligodeoxynucleotide 1826 might be used to cross-prime strong CD8+-T-cell-dependent protective immunity against T. cruzi infection.


PLOS Pathogens | 2012

Pathogen-induced proapoptotic phenotype and high CD95 (Fas) expression accompany a suboptimal CD8+ T-cell response: reversal by adenoviral vaccine.

José Ronnie Vasconcelos; Oscar Bruna Romero; Adriano F. Araújo; Mariana R. Dominguez; Jonatan Ersching; Bruna Cunha de Alencar; Alexandre V. Machado; Ricardo T. Gazzinelli; Karina R. Bortoluci; Gustavo P. Amarante-Mendes; Marcela F. Lopes; Mauricio M. Rodrigues

MHC class Ia-restricted CD8+ T cells are important mediators of the adaptive immune response against infections caused by intracellular microorganisms. Whereas antigen-specific effector CD8+ T cells can clear infection caused by intracellular pathogens, in some circumstances, the immune response is suboptimal and the microorganisms survive, causing host death or chronic infection. Here, we explored the cellular and molecular mechanisms that could explain why CD8+ T cell-mediated immunity during infection with the human protozoan parasite Trypanosoma cruzi is not optimal. For that purpose, we compared the CD8+ T-cell mediated immune responses in mice infected with T. cruzi or vaccinated with a recombinant adenovirus expressing an immunodominant parasite antigen. Several functional and phenotypic characteristics of specific CD8+ T cells overlapped. Among few exceptions was an accelerated expansion of the immune response in adenoviral vaccinated mice when compared to infected ones. Also, there was an upregulated expression of the apoptotic-signaling receptor CD95 on the surface of specific T cells from infected mice, which was not observed in the case of adenoviral-vaccinated mice. Most importantly, adenoviral vaccine provided at the time of infection significantly reduced the upregulation of CD95 expression and the proapoptotic phenotype of pathogen-specific CD8+ cells expanded during infection. In parallel, infected adenovirus-vaccinated mice had a stronger CD8 T-cell mediated immune response and survived an otherwise lethal infection. We concluded that a suboptimal CD8+ T-cell response is associated with an upregulation of CD95 expression and a proapoptotic phenotype. Both can be blocked by adenoviral vaccination.


PLOS Pathogens | 2010

Impaired Innate Immunity in Tlr4−/− Mice but Preserved CD8+ T Cell Responses against Trypanosoma cruzi in Tlr4-, Tlr2-, Tlr9- or Myd88-Deficient Mice

Ana-Carolina Oliveira; Bruna Cunha de Alencar; Fanny Tzelepis; Weberton Klezewsky; Raquel N. da Silva; Fabieni S. Neves; Gisele S. Cavalcanti; Silvia Beatriz Boscardin; Marise P. Nunes; Marcelo F. Santiago; Alberto Nobrega; Mauricio M. Rodrigues; Maria Bellio

The murine model of T. cruzi infection has provided compelling evidence that development of host resistance against intracellular protozoans critically depends on the activation of members of the Toll-like receptor (TLR) family via the MyD88 adaptor molecule. However, the possibility that TLR/MyD88 signaling pathways also control the induction of immunoprotective CD8+ T cell-mediated effector functions has not been investigated to date. We addressed this question by measuring the frequencies of IFN-γ secreting CD8+ T cells specific for H-2Kb-restricted immunodominant peptides as well as the in vivo Ag-specific cytotoxic response in infected animals that are deficient either in TLR2, TLR4, TLR9 or MyD88 signaling pathways. Strikingly, we found that T. cruzi-infected Tlr2−/−, Tlr4−/−, Tlr9−/ − or Myd88−/− mice generated both specific cytotoxic responses and IFN-γ secreting CD8+ T cells at levels comparable to WT mice, although the frequency of IFN-γ+CD4+ cells was diminished in infected Myd88−/− mice. We also analyzed the efficiency of TLR4-driven immune responses against T. cruzi using TLR4-deficient mice on the C57BL genetic background (B6 and B10). Our studies demonstrated that TLR4 signaling is required for optimal production of IFN-γ, TNF-α and nitric oxide (NO) in the spleen of infected animals and, as a consequence, Tlr4−/− mice display higher parasitemia levels. Collectively, our results indicate that TLR4, as well as previously shown for TLR2, TLR9 and MyD88, contributes to the innate immune response and, consequently, resistance in the acute phase of infection, although each of these pathways is not individually essential for the generation of class I-restricted responses against T. cruzi.


Infection and Immunity | 2011

Heterologous Plasmid DNA Prime-Recombinant Human Adenovirus 5 Boost Vaccination Generates a Stable Pool of Protective Long-Lived CD8+ T Effector Memory Cells Specific for a Human Parasite, Trypanosoma cruzi

Paula Ordonhez Rigato; Bruna Cunha de Alencar; José Ronnie Vasconcelos; Mariana R. Dominguez; Adriano F. Araújo; Alexandre V. Machado; Ricardo T. Gazzinelli; Oscar Bruna-Romero; Mauricio M. Rodrigues

ABSTRACT Recently, we described a heterologous prime-boost strategy using plasmid DNA followed by replication-defective human recombinant adenovirus type 5 as a powerful strategy to elicit long-lived CD8+ T-cell-mediated protective immunity against experimental systemic infection of mice with a human intracellular protozoan parasite, Trypanosoma cruzi. In the present study, we further characterized the protective long-lived CD8+ T cells. We compared several functional and phenotypic aspects of specific CD8+ T cells present 14 or 98 days after the last immunizing dose and found the following: (i) the numbers of specific cells were similar, as determined by multimer staining or by determining the number of gamma interferon (IFN-γ)-secreting cells by enzyme-linked immunospot (ELISPOT) assay; (ii) these cells were equally cytotoxic in vivo; (iii) following in vitro stimulation, a slight decline in the frequency of multifunctional cells (CD107a+ IFN-γ+ or CD107a+ IFN-γ+ tumor necrosis factor alpha positive [TNF-α+]) was paralleled by a significant increase of CD107a singly positive cells after 98 days; (iv) the expression of several surface markers was identical, except for the reexpression of CD127 after 98 days; (v) the use of genetically deficient mice revealed a role for interleukin-12 (IL-12)/IL-23, but not IFN-γ, in the maintenance of these memory cells; and (vi) subsequent immunizations with an unrelated virus or a plasmid vaccine or the depletion of CD4+ T cells did not significantly erode the number or function of these CD8+ T cells during the 15-week period. From these results, we concluded that heterologous plasmid DNA prime-adenovirus boost vaccination generated a stable pool of functional protective long-lived CD8+ T cells with an effector memory phenotype.


PLOS ONE | 2011

Subdominant/cryptic CD8 T cell epitopes contribute to resistance against experimental infection with a human protozoan parasite.

Mariana R. Dominguez; Eduardo L. V. Silveira; José Ronnie Vasconcelos; Bruna Cunha de Alencar; Alexandre V. Machado; Oscar Bruna-Romero; Ricardo T. Gazzinelli; Mauricio M. Rodrigues

During adaptive immune response, pathogen-specific CD8+ T cells recognize preferentially a small number of epitopes, a phenomenon known as immunodominance. Its biological implications during natural or vaccine-induced immune responses are still unclear. Earlier, we have shown that during experimental infection, the human intracellular pathogen Trypanosoma cruzi restricts the repertoire of CD8+ T cells generating strong immunodominance. We hypothesized that this phenomenon could be a mechanism used by the parasite to reduce the breath and magnitude of the immune response, favoring parasitism, and thus that artificially broadening the T cell repertoire could favor the host. Here, we confirmed our previous observation by showing that CD8+ T cells of H-2a infected mice recognized a single epitope of an immunodominant antigen of the trans-sialidase super-family. In sharp contrast, CD8+ T cells from mice immunized with recombinant genetic vaccines (plasmid DNA and adenovirus) expressing this same T. cruzi antigen recognized, in addition to the immunodominant epitope, two other subdominant epitopes. This unexpected observation allowed us to test the protective role of the immune response to subdominant epitopes. This was accomplished by genetic vaccination of mice with mutated genes that did not express a functional immunodominant epitope. We found that these mice developed immune responses directed solely to the subdominant/cryptic CD8 T cell epitopes and a significant degree of protective immunity against infection mediated by CD8+ T cells. We concluded that artificially broadening the T cell repertoire contributes to host resistance against infection, a finding that has implications for the host-parasite relationship and vaccine development.


PLOS ONE | 2013

Dynamics of HIV-Containing Compartments in Macrophages Reveal Sequestration of Virions and Transient Surface Connections

Raphaël Gaudin; Stefano Berre; Bruna Cunha de Alencar; Jérémie Decalf; Michael Schindler; François-Xavier Gobert; Mabel Jouve; Philippe Benaroch

During HIV pathogenesis, infected macrophages behave as “viral reservoirs” that accumulate and retain virions within dedicated internal Virus-Containing Compartments (VCCs). The nature of VCCs remains ill characterized and controversial. Using wild-type HIV-1 and a replication-competent HIV-1 carrying GFP internal to the Gag precursor, we analyzed the biogenesis and evolution of VCCs in primary human macrophages. VCCs appear roughly 14 hours after viral protein synthesis is detected, initially contain few motile viral particles, and then mature to fill up with virions that become packed and immobile. The amount of intracellular Gag, the proportion of dense VCCs, and the density of viral particles in their lumen increased with time post-infection. In contrast, the secretion of virions, their infectivity and their transmission to T cells decreased overtime, suggesting that HIV-infected macrophages tend to pack and retain newly formed virions into dense compartments. A minor proportion of VCCs remains connected to the plasma membrane overtime. Surprisingly, live cell imaging combined with correlative light and electron microscopy revealed that such connections can be transient, highlighting their dynamic nature. Together, our results shed light on the late phases of the HIV-1 cycle and reveal some of its macrophage specific features.


Trends in Cell Biology | 2013

HIV trafficking in host cells: motors wanted!

Raphaë l Gaudin; Bruna Cunha de Alencar; Nathalie Arhel; Philippe Benaroch

Throughout the viral replication cycle, viral proteins, complexes, and particles need to be transported within host cells. These transport events are dependent on the host cell cytoskeleton and molecular motors. However, the mechanisms by which virus is trafficked along cytoskeleton filaments and how molecular motors are recruited and regulated to guarantee successful integration of the viral genome and production of new viruses has only recently begun to be understood. Recent studies on HIV have identified specific molecular motors involved in the trafficking of these viral particles. Here we review recent literature on the transport of HIV components in the cell, provide evidence for the identity and role of molecular motors in this process, and highlight how these trafficking events may be related to those occurring with other viruses.

Collaboration


Dive into the Bruna Cunha de Alencar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ricardo T. Gazzinelli

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

José Ronnie Vasconcelos

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

Adriano F. Araújo

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

Fanny Tzelepis

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

Mariana R. Dominguez

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marcus L. O. Penido

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge