Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bruno B. Queliconi is active.

Publication


Featured researches published by Bruno B. Queliconi.


Biochimica et Biophysica Acta | 2011

Redox regulation of the mitochondrial KATP channel in cardioprotection

Bruno B. Queliconi; Andrew P. Wojtovich; Sergiy M. Nadtochiy; Alicia J. Kowaltowski; Paul S. Brookes

The mitochondrial ATP-sensitive potassium channel (mK(ATP)) is important in the protective mechanism of ischemic preconditioning (IPC). The channel is reportedly sensitive to reactive oxygen and nitrogen species, and the aim of this study was to compare such species in parallel, to build a more comprehensive picture of mK(ATP) regulation. mK(ATP) activity was measured by both osmotic swelling and Tl(+) flux assays, in isolated rat heart mitochondria. An isolated adult rat cardiomyocyte model of ischemia-reperfusion (IR) injury was also used to determine the role of mK(ATP) in cardioprotection by nitroxyl. Key findings were as follows: (i) mK(ATP) was activated by O(2)(-) and H(2)O(2) but not other peroxides. (ii) mK(ATP) was inhibited by NADPH. (iii) mK(ATP) was activated by S-nitrosothiols, nitroxyl, and nitrolinoleate. The latter two species also inhibited mitochondrial complex II. (iv) Nitroxyl protected cardiomyocytes against IR injury in an mK(ATP)-dependent manner. Overall, these results suggest that the mK(ATP) channel is activated by specific reactive oxygen and nitrogen species, and inhibited by NADPH. The redox modulation of mK(ATP) may be an underlying mechanism for its regulation in the context of IPC. This article is part of a Special Issue entitled: Mitochondria and Cardioprotection.


Cardiovascular Research | 2014

Aldehyde dehydrogenase 2 activation in heart failure restores mitochondrial function and improves ventricular function and remodelling

Katia M.S. Gomes; Juliane C. Campos; Luiz Roberto Grassmann Bechara; Bruno B. Queliconi; Vanessa Morais Lima; Marie-Hélène Disatnik; Paulo Magno; Che-Hong Chen; Patricia C. Brum; Alicia J. Kowaltowski; Daria Mochly-Rosen; Julio Cesar Batista Ferreira

AIMS We previously demonstrated that pharmacological activation of mitochondrial aldehyde dehydrogenase 2 (ALDH2) protects the heart against acute ischaemia/reperfusion injury. Here, we determined the benefits of chronic activation of ALDH2 on the progression of heart failure (HF) using a post-myocardial infarction model. METHODS AND RESULTS We showed that a 6-week treatment of myocardial infarction-induced HF rats with a selective ALDH2 activator (Alda-1), starting 4 weeks after myocardial infarction at a time when ventricular remodelling and cardiac dysfunction were present, improved cardiomyocyte shortening, cardiac function, left ventricular compliance and diastolic function under basal conditions, and after isoproterenol stimulation. Importantly, sustained Alda-1 treatment showed no toxicity and promoted a cardiac anti-remodelling effect by suppressing myocardial hypertrophy and fibrosis. Moreover, accumulation of 4-hydroxynonenal (4-HNE)-protein adducts and protein carbonyls seen in HF was not observed in Alda-1-treated rats, suggesting that increasing the activity of ALDH2 contributes to the reduction of aldehydic load in failing hearts. ALDH2 activation was associated with improved mitochondrial function, including elevated mitochondrial respiratory control ratios and reduced H2O2 release. Importantly, selective ALDH2 activation decreased mitochondrial Ca(2+)-induced permeability transition and cytochrome c release in failing hearts. Further supporting a mitochondrial mechanism for ALDH2, Alda-1 treatment preserved mitochondrial function upon in vitro aldehydic load. CONCLUSIONS Selective activation of mitochondrial ALDH2 is sufficient to improve the HF outcome by reducing the toxic effects of aldehydic overload on mitochondrial bioenergetics and reactive oxygen species generation, suggesting that ALDH2 activators, such as Alda-1, have a potential therapeutic value for treating HF patients.


PLOS ONE | 2012

Exercise training restores cardiac protein quality control in heart failure.

Juliane C. Campos; Bruno B. Queliconi; Paulo Magno Martins Dourado; Telma F. Cunha; Vanessa O. Zambelli; Luiz Roberto Grassmann Bechara; Alicia J. Kowaltowski; Patricia C. Brum; Daria Mochly-Rosen; Julio Cesar Batista Ferreira

Exercise training is a well-known coadjuvant in heart failure treatment; however, the molecular mechanisms underlying its beneficial effects remain elusive. Despite the primary cause, heart failure is often preceded by two distinct phenomena: mitochondria dysfunction and cytosolic protein quality control disruption. The objective of the study was to determine the contribution of exercise training in regulating cardiac mitochondria metabolism and cytosolic protein quality control in a post-myocardial infarction-induced heart failure (MI-HF) animal model. Our data demonstrated that isolated cardiac mitochondria from MI-HF rats displayed decreased oxygen consumption, reduced maximum calcium uptake and elevated H2O2 release. These changes were accompanied by exacerbated cardiac oxidative stress and proteasomal insufficiency. Declined proteasomal activity contributes to cardiac protein quality control disruption in our MI-HF model. Using cultured neonatal cardiomyocytes, we showed that either antimycin A or H2O2 resulted in inactivation of proteasomal peptidase activity, accumulation of oxidized proteins and cell death, recapitulating our in vivo model. Of interest, eight weeks of exercise training improved cardiac function, peak oxygen uptake and exercise tolerance in MI-HF rats. Moreover, exercise training restored mitochondrial oxygen consumption, increased Ca2+-induced permeability transition and reduced H2O2 release in MI-HF rats. These changes were followed by reduced oxidative stress and better cardiac protein quality control. Taken together, our findings uncover the potential contribution of mitochondrial dysfunction and cytosolic protein quality control disruption to heart failure and highlight the positive effects of exercise training in re-establishing cardiac mitochondrial physiology and protein quality control, reinforcing the importance of this intervention as a non-pharmacological tool for heart failure therapy.


Free Radical Biology and Medicine | 2012

Mitochondrial compartmentalization of redox processes

Ariel R. Cardoso; Bruno Chausse; Fernanda M. Cunha; Luis Alberto Luévano-Martínez; Thire B.M. Marazzi; Phillipe S. Pessoa; Bruno B. Queliconi; Alicia J. Kowaltowski

Knowledge of location and intracellular subcompartmentalization is essential for the understanding of redox processes, because oxidants, owing to their reactive nature, must be generated close to the molecules modified in both signaling and damaging processes. Here we discuss known redox characteristics of various mitochondrial microenvironments. Points covered are the locations of mitochondrial oxidant generation, characteristics of antioxidant systems in various mitochondrial compartments, and diffusion characteristics of oxidants in mitochondria. We also review techniques used to measure redox state in mitochondrial subcompartments, antioxidants targeted to mitochondrial subcompartments, and methodological concerns that must be addressed when using these tools.


Biochimica et Biophysica Acta | 2010

Mitochondrial ion transport pathways: role in metabolic diseases.

Ariel R. Cardoso; Bruno B. Queliconi; Alicia J. Kowaltowski

Mitochondria are the central coordinators of energy metabolism and alterations in their function and number have long been associated with metabolic disorders such as obesity, diabetes and hyperlipidemias. Since oxidative phosphorylation requires an electrochemical gradient across the inner mitochondrial membrane, ion channels in this membrane certainly must play an important role in the regulation of energy metabolism. However, in many experimental settings, the relationship between the activity of mitochondrial ion transport and metabolic disorders is still poorly understood. This review briefly summarizes some aspects of mitochondrial H+ transport (promoted by uncoupling proteins, UCPs), Ca2+ and K+ uniporters which may be determinant in metabolic disorders.


Autophagy | 2017

Exercise reestablishes autophagic flux and mitochondrial quality control in heart failure

Juliane C. Campos; Bruno B. Queliconi; Luiz Henrique Marchesi Bozi; Luiz Roberto Grassmann Bechara; Paulo Magno Martins Dourado; Allen M. Andres; Paulo R. Jannig; Katia M.S. Gomes; Vanessa O. Zambelli; Cibele Rocha-Resende; Silvia Guatimosim; Patricia C. Brum; Daria Mochly-Rosen; Roberta A. Gottlieb; Alicia J. Kowaltowski; Julio Cesar Batista Ferreira

ABSTRACT We previously reported that facilitating the clearance of damaged mitochondria through macroautophagy/autophagy protects against acute myocardial infarction. Here we characterize the impact of exercise, a safe strategy against cardiovascular disease, on cardiac autophagy and its contribution to mitochondrial quality control, bioenergetics and oxidative damage in a post-myocardial infarction-induced heart failure animal model. We found that failing hearts displayed reduced autophagic flux depicted by accumulation of autophagy-related markers and loss of responsiveness to chloroquine treatment at 4 and 12 wk after myocardial infarction. These changes were accompanied by accumulation of fragmented mitochondria with reduced O2 consumption, elevated H2O2 release and increased Ca2+-induced mitochondrial permeability transition pore opening. Of interest, disruption of autophagic flux was sufficient to decrease cardiac mitochondrial function in sham-treated animals and increase cardiomyocyte toxicity upon mitochondrial stress. Importantly, 8 wk of exercise training, starting 4 wk after myocardial infarction at a time when autophagy and mitochondrial oxidative capacity were already impaired, improved cardiac autophagic flux. These changes were followed by reduced mitochondrial number:size ratio, increased mitochondrial bioenergetics and better cardiac function. Moreover, exercise training increased cardiac mitochondrial number, size and oxidative capacity without affecting autophagic flux in sham-treated animals. Further supporting an autophagy mechanism for exercise-induced improvements of mitochondrial bioenergetics in heart failure, acute in vivo inhibition of autophagic flux was sufficient to mitigate the increased mitochondrial oxidative capacity triggered by exercise in failing hearts. Collectively, our findings uncover the potential contribution of exercise in restoring cardiac autophagy flux in heart failure, which is associated with better mitochondrial quality control, bioenergetics and cardiac function.


Free Radical Biology and Medicine | 2012

Bicarbonate Modulates Oxidative and Functional Damage in Ischemia-Reperfusion

Bruno B. Queliconi; Thire B.M. Marazzi; Sandra M. Vaz; Paul S. Brookes; Keith Nehrke; Ohara Augusto; Alicia J. Kowaltowski

The carbon dioxide/bicarbonate (CO(2)/HCO(3)(-)) pair is the main biological pH buffer. However, its influence on biological processes, and in particular redox processes, is still poorly explored. Here we study the effect of CO(2)/HCO(3)(-) on ischemic injury in three distinct models (cardiac HL-1 cells, perfused rat heart, and Caenorhabditis elegans). We found that, although various concentrations of CO(2)/HCO(3)(-) do not affect function under basal conditions, ischemia-reperfusion or similar insults in the presence of higher CO(2)/HCO(3)(-) resulted in greater functional loss associated with higher oxidative damage in all models. Because the effect of CO(2)/HCO(3)(-) was observed in all models tested, we believe this buffer is an important determinant of oxidative damage after ischemia-reperfusion.


PLOS ONE | 2016

Bicarbonate Increases Ischemia-Reperfusion Damage by Inhibiting Mitophagy.

Bruno B. Queliconi; Alicia J. Kowaltowski; Roberta A. Gottlieb

During an ischemic event, bicarbonate and CO2 concentration increase as a consequence of O2 consumption and lack of blood flow. This event is important as bicarbonate/CO2 is determinant for several redox and enzymatic reactions, in addition to pH regulation. Until now, most work done on the role of bicarbonate in ischemia-reperfusion injury focused on pH changes; although reperfusion solutions have a fixed pH, cardiac resuscitation protocols commonly employ bicarbonate to correct the profound acidosis associated with respiratory arrest. However, we previously showed that bicarbonate can increase tissue damage and protein oxidative damage independent of pH. Here we show the molecular basis of bicarbonate-induced reperfusion damage: the presence of bicarbonate selectively impairs mitophagy, with no detectable effect on autophagy, proteasome activity, reactive oxygen species production or protein oxidation. We also show that inhibition of autophagy reproduces the effects of bicarbonate in reperfusion injury, providing additional evidence in support of this mechanism. This phenomenon is especially important because bicarbonate is widely used in resuscitation protocols after cardiac arrest, and while effective as a buffer, may also contribute to myocardial injury.


Journal of Visualized Experiments | 2014

An Anoxia-starvation Model for Ischemia/Reperfusion in C. elegans

Bruno B. Queliconi; Alicia J. Kowaltowski; Keith Nehrke

Protocols for anoxia/starvation in the genetic model organism C. elegans simulate ischemia/reperfusion. Worms are separated from bacterial food and placed under anoxia for 20 hr (simulated ischemia), and subsequently moved to a normal atmosphere with food (simulated reperfusion). This experimental paradigm results in increased death and neuronal damage, and techniques are presented to assess organism viability, alterations to the morphology of touch neuron processes, as well as touch sensitivity, which represents the behavioral output of neuronal function. Finally, a method for constructing hypoxic incubators using common kitchen storage containers is described. The addition of a mass flow control unit allows for alterations to be made to the gas mixture in the custom incubators, and a circulating water bath allows for both temperature control and makes it easy to identify leaks. This method provides a low cost alternative to commercially available units.


Archive | 2010

Mitochondrial Reactive Oxygen Species in Myocardial Pre- and Postconditioning

Ariel R. Cardoso; Bruno B. Queliconi; Alicia J. Kowaltowski

Myocardial ischemia followed by reperfusion is a well established condition of medical importance in which reactive oxygen species (ROS) are determinant for the pathological outcome. Indeed, oxidative damage during reperfusion is causative of many of the complications found after ischemia. ROS leading to postischemic myocardial damage come from many sources, including mitochondria, NADPH oxidase, xanthine oxidase, and infiltrated phagocytes [1]. ROS also can act as signaling molecules in the cardiovascular system, including protecting the heart against myocardial ischemic damage, secondarily to ischemic pre- and postconditioning. In this case, there is ample evidence that the source of signaling ROS is mitochondrial [2–7]. This chapter will briefly review aspects of mitochondrial ROS signaling relevant to myocardial ischemic protection by pre- and postconditioning.

Collaboration


Dive into the Bruno B. Queliconi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge