Bruno Bellina
University of Manchester
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bruno Bellina.
Nature Communications | 2015
Roger J. Kutta; Samantha J. O. Hardman; Linus O. Johannissen; Bruno Bellina; Hanan L. Messiha; Juan Manuel Ortiz-Guerrero; Montserrat Elías-Arnanz; S. Padmanabhan; Perdita E. Barran; Nigel S. Scrutton; Alex R. Jones
The coenzyme B12-dependent photoreceptor protein, CarH, is a bacterial transcriptional regulator that controls the biosynthesis of carotenoids in response to light. On binding of coenzyme B12 the monomeric apoprotein forms tetramers in the dark, which bind operator DNA thus blocking transcription. Under illumination the CarH tetramer dissociates, weakening its affinity for DNA and allowing transcription. The mechanism by which this occurs is unknown. Here we describe the photochemistry in CarH that ultimately triggers tetramer dissociation; it proceeds via a cob(III)alamin intermediate, which then forms a stable adduct with the protein. This pathway is without precedent and our data suggest it is independent of the radical chemistry common to both coenzyme B12 enzymology and its known photochemistry. It provides a mechanistic foundation for the emerging field of B12 photobiology and will serve to inform the development of a new class of optogenetic tool for the control of gene expression.
Physical Chemistry Chemical Physics | 2012
Bruno Bellina; Isabelle Compagnon; Luke MacAleese; Fabien Chirot; Jérôme Lemoine; Philippe Maitre; M. Broyer; Rodolphe Antoine; Alexander Kulesza; Roland Mitrić; Vlasta Bonačić-Koutecký; Philippe Dugourd
Transition metal-ion complexation is essential to the function and structural stability of many proteins. We studied silver complexation with the octarepeat motif ProHisGlyGlyGlyTrpGlyGln of the prion protein, which shows competitive sites for metal chelation including amide, indole and imidazole groups. This octapeptide is known as a favourable transition metal binding site in prion protein. We used ion mobility spectrometry (IMS), infrared multiple photon dissociation (IRMPD) spectroscopy and density functional theory calculations (DFT) to identify the binding motifs of a silver cation on HisGlyGlyGlyTrp peptide as well as on peptide subsequences. Ultra-violet photodissociation (UVPD) and collision induced dissociation mass spectrometry together with the time-dependent density functional method was then exploited to study the influence of binding sites on optical properties and on the ground and excited states reactivity of the peptide. We show that the metal cation is bound to the π-system of the indole group and a nitrogen atom of the imidazole group and that charge transfers from the indole group to the silver cation occur in excited electronic states.
Journal of Biological Chemistry | 2015
Karl A. P. Payne; Karl Fisher; Hanno Sjuts; Mark S. Dunstan; Bruno Bellina; Linus O. Johannissen; Perdita E. Barran; Sam Hay; Stephen E. J. Rigby; David Leys
Background: Little is known about epoxyqueuosine reductase (QueG), which catalyzes the final step in the biosynthesis of queuosine. Results: We report solution and structural characterization of Streptococcus thermophilus QueG. Conclusion: The QueG similarity to reductive dehalogenases is largely limited to cofactor binding. Significance: Our study establishes the link between cobalamin-metabolism and tRNA modification and suggests a mechanism for cobalamin-dependent epoxide reduction. Queuosine (Q) is a hypermodified RNA base that replaces guanine in the wobble positions of 5′-GUN-3′ tRNA molecules. Q is exclusively made by bacteria, and the corresponding queuine base is a micronutrient salvaged by eukaryotic species. The final step in Q biosynthesis is the reduction of the epoxide precursor, epoxyqueuosine, to yield the Q cyclopentene ring. The epoxyqueuosine reductase responsible, QueG, shares distant homology with the cobalamin-dependent reductive dehalogenase (RdhA), however the role played by cobalamin in QueG catalysis has remained elusive. We report the solution and structural characterization of Streptococcus thermophilus QueG, revealing the enzyme harbors a redox chain consisting of two [4Fe-4S] clusters and a cob(II)alamin in the base-off form, similar to RdhAs. In contrast to the shared redox chain architecture, the QueG active site shares little homology with RdhA, with the notable exception of a conserved Tyr that is proposed to function as a proton donor during reductive dehalogenation. Docking of an epoxyqueuosine substrate suggests the QueG active site places the substrate cyclopentane moiety in close proximity of the cobalt. Both the Tyr and a conserved Asp are implicated as proton donors to the epoxide leaving group. This suggests that, in contrast to the unusual carbon-halogen bond chemistry catalyzed by RdhAs, QueG acts via Co-C bond formation. Our study establishes the common features of Class III cobalamin-dependent enzymes, and reveals an unexpected diversity in the reductive chemistry catalyzed by these enzymes.
Analyst | 2014
Bruno Bellina; Jeffery Mark Brown; Jakub Ujma; Paul Murray; Kevin Giles; Michael A. Morris; Isabelle Compagnon; Perdita E. Barran
An ion mobility mass spectrometer has been modified to allow optical interrogation of ions with different mass-to-charge (m/z) ratios and/or mobilities (K). An ion gating and trapping procedure has been developed which allows us to store ions for several seconds enabling UV photodissociation (UVPD).
Journal of the American Society for Mass Spectrometry | 2017
Jacquelyn R. Jhingree; Bruno Bellina; Kamila J. Pacholarz; Perdita E. Barran
AbstractCharge reduction in the gas phase provides a direct means of manipulating protein charge state, and when coupled to ion mobility mass spectrometry (IM-MS), it is possible to monitor the effect of charge on protein conformation in the absence of solution. Use of the electron transfer reagent 1,3-dicyanobenzene, coupled with IM-MS, allows us to monitor the effect of charge reduction on the conformation of two proteins deliberately chosen from opposite sides of the order to disorder continuum: bovine pancreatic trypsin inhibitor (BPTI) and beta casein. The ordered BPTI presents compact conformers for each of three charge states accompanied by narrow collision cross-section distributions (TWCCSDN2→He). Upon reduction of BPTI, irrespective of precursor charge state, the TWCCSN2→He decreases to a similar distribution as found for the nESI generated ion of identical charge. The behavior of beta casein upon charge reduction is more complex. It presents over a wide charge state range (9–28), and intermediate charge states (13–18) have broad TWCCSDN2→He with multiple conformations, where both compaction and rearrangement are seen. Further, we see that the TWCCSDN2→He of the latter charge states are even affected by the presence of radical anions. Overall, we conclude that the flexible nature of some proteins result in broad conformational distributions comprised of many families, even for single charge states, and the barrier between different states can be easily overcome by an alteration of the net charge. Graphical Abstractᅟ
Analytical Chemistry | 2018
Ulrik H. Mistarz; Bruno Bellina; Pernille Foged Jensen; Jeffery Mark Brown; Perdita E. Barran; Kasper D. Rand
Hydrogen/deuterium exchange mass spectrometry (HDX-MS) is now a routinely used technique to inform on protein structure, dynamics, and interactions. Localizing the incorporated deuterium content on a single residue basis increases the spatial resolution of this technique enabling detailed structural analysis. Here, we investigate the use of ultraviolet photodissociation (UVPD) at 213 nm to measure deuterium levels at single residue resolution in HDX-MS experiments. Using a selectively labeled peptide, we show that UVPD occurs without H/D scrambling as the peptide probe accurately retains its solution-phase deuterium labeling pattern. Our results indicate that UVPD provides an attractive alternative to electron mediated dissociation for increasing the spatial resolution of the HDX-MS experiment, capable of yielding high fragmentation efficiency, high fragment ion diversity, and low precursor ion charge-state dependency.
Analyst | 2012
E. Papalazarou; C. Cauchy; T. Barillot; Bruno Bellina; Jacques Maurelli; Marc Barbaire; C. Clavier; Franck Bertorelle; Rodolphe Antoine; Isabelle Compagnon; A. R. Allouche; C. Bordas; Ph. Dugourd; F. Lépine
We present a new compact and versatile experimental set-up that has been designed to perform electron and ion imaging experiments on large multiply charged gas phase molecular and cluster species. It combines an electrospray ionization source, a quadrupole mass filter guiding ion optics and a velocity map imaging spectrometer. Characterization of the spectrometer has been performed on atomic ions. Results obtained on molecular species (stilbene 420 dianions) demonstrate the possibility offered by this experimental set-up.
bioRxiv | 2018
Inês S Camacho; Alina Theisen; Linus O. Johannissen; L. Aranzazú Díaz-Ramos; John M. Christie; Gareth I. Jenkins; Bruno Bellina; Perdita E. Barran; Alex R. Jones
UVR8 is a plant photoreceptor protein that regulates photomorphogenic and protective responses to UV light. The inactive, homodimeric state absorbs UV-B light resulting in dissociation into monomers, which are considered to be the active state and comprise a β-propeller core domain and intrinsically disordered N- and C-terminal tails. The C-terminus is required for functional binding to signalling partner COP1. To date, however, structural studies have only been conducted with the core domain where the terminal tails have been truncated. Here, we report structural investigations of full-length UVR8 using native ion mobility mass spectrometry adapted for photo-activation. We show that, whilst truncated UVR8 photo-converts from a single conformation of dimers to a single monomer conformation, the full-length protein exist in numerous conformational families. The full-length dimer adopts both a compact state and an extended state where the C-terminus is primed for activation. In the monomer the extended C-terminus destabilises the core domain to produce highly extended yet stable conformations, which we propose are the fully active states that bind COP1. Our results reveal the conformational diversity of full-length UVR8. We also demonstrate the potential power of native mass spectrometry to probe functionally important structural dynamics of photoreceptor proteins throughout nature. TOC Graphic
Journal of the American Society for Mass Spectrometry | 2018
Alina Theisen; Rachelle Black; Davide Corinti; Jeffery Mark Brown; Bruno Bellina; Perdita E. Barran
AbstractThe initial stages of protein unfolding may reflect the stability of the entire fold and can also reveal which parts of a protein can be perturbed, without restructuring the rest. In this work, we couple UVPD with activated ion mobility mass spectrometry to measure how three model proteins start to unfold. Ubiquitin, cytochrome c and myoglobin ions produced via nESI from salty solutions are subjected to UV irradiation pre-mobility separation; experiments are conducted with a range of source conditions which alter the conformation of the precursor ion as shown by the drift time profiles. For all three proteins, the compact structures result in less fragmentation than more extended structures which emerge following progressive in-source activation. Cleavage sites are found to differ between conformational ensembles, for example, for the dominant charge state of cytochrome c [M + 7H]7+, cleavage at Phe10, Thr19 and Val20 was only observed in activating conditions whilst cleavage at Ala43 is dramatically enhanced. Mapping the photo-cleaved fragments onto crystallographic structures provides insight into the local structural changes that occur as protein unfolding progresses, which is coupled to global restructuring observed in the drift time profiles. Graphical Abstract
Journal of Physical Chemistry Letters | 2010
Ramzi Hamouda; Bruno Bellina; Franck Bertorelle; Isabelle Compagnon; Rodolphe Antoine; M. Broyer; D. Rayane; Philippe Dugourd