Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bruno Bougard is active.

Publication


Featured researches published by Bruno Bougard.


IEEE Transactions on Wireless Communications | 2008

Performance Analysis of Slotted Carrier Sense IEEE 802.15.4 Medium Access Layer

Sofie Pollin; Mustafa Ergen; Sinem Coleri Ergen; Bruno Bougard; L. Der Perre; Ingrid Moerman; Ahmad Bahai; Pravin Varaiya; Francky Catthoor

Advances in low-power and low-cost sensor networks have led to solutions mature enough for use in a broad range of applications varying from health monitoring to building surveillance. The development of those applications has been stimulated by the finalization of the IEEE 802.15.4 standard, which defines the medium access control (MAC) and physical layer for sensor networks. One of the MAC schemes proposed is slotted carrier sense multiple access with collision avoidance (CSMA/CA), and this paper analyzes whether this scheme meets the design constraints of those low-power and low-cost sensor networks. The paper provides a detailed analytical evaluation of its performance in a star topology network, for uplink and acknowledged uplink traffic. Both saturated and unsaturated periodic traffic scenarios are considered. The form of the analysis is similar to that of Bianchi for IEEE 802.11 DCF only in the use of a per user Markov model to capture the state of each user at each moment in time. The key assumptions to enable this important simplification and the coupling of the per user Markov models are however different, as a result of the very different designs of the 802.15.4 and 802.11 carrier sensing mechanisms. The performance predicted by the analytical model is very close to that obtained by simulation. Throughput and energy consumption analysis is then performed by using the model for a range of scenarios. Some design guidelines are derived to set the 802.15.4 parameters as function of the network requirements.


design, automation, and test in europe | 2005

Energy Efficiency of the IEEE 802.15.4 Standard in Dense Wireless Microsensor Networks: Modeling and Improvement Perspectives

Bruno Bougard; Francky Catthoor; Denis C. Daly; Anantha P. Chandrakasan; Wim Dehaene

Wireless microsensor networks, which have been the topic of intensive research in recent years, are now emerging in industrial applications. An important milestone in this transition has been the release of the IEEE 802.15.4 standard that specifies interoperable wireless physical and medium access control layers targeted to sensor node radios. In this paper, we evaluate the potential of an 802.15.4 radio for use in an ultra low power sensor node operating in a dense network. Starting from measurements carried out on the off-the-shelf radio, effective radio activation and link adaptation policies are derived. It is shown that, in a typical sensor network scenario, the average power per node can be reduced down to 211 /spl mu/W. Next, the energy consumption breakdown between the different phases of a packet transmission is presented, indicating which part of the transceiver architecture can most effectively be optimized in order to further reduce the radio power, enabling self-powered wireless microsensor networks.


global communications conference | 2006

WLC10-5: Performance Analysis of Slotted Carrier Sense IEEE 802.15.4 Medium Access Layer

Sofie Pollin; Mustafa Ergen; Sinem Coleri Ergen; Bruno Bougard; Liesbet Van der Perre; Francky Catthoor; Ingrid Moerman; Ahmad Bahai; Pravin Varaiya

The IEEE 802.15.4 standard defines the medium access control (MAC) and physical layer for sensor networks. One of the MAC schemes proposed is slotted carrier sense multiple access with collision avoidance (CSMA/CA), and this paper analyzes whether this scheme meets the design constraints of low-power and low-cost sensor networks. The paper provides a detailed analytical evaluation of its performance in a star topology network for both saturated and unsaturated periodic traffic.The form of the analysis is similar to that of Bianchi for IEEE 802.11 DCF only in the use of a per user Markov model to capture the state of each user at each moment in time. The key assumptions to enable this important simplification and the coupling of the per user Markov models are however different, as a result of the very different designs of the 802.15.4 and 802.11 carrier sensing mechanisms. The performance predicted by the analytical model is very close to that obtained by simulation. Throughput and energy consumption analysis is then performed and design guidelines are derived.


Proceedings of the IEEE | 2009

3-D Technology Assessment: Path-Finding the Technology/Design Sweet-Spot

Paul Marchal; Bruno Bougard; Guruprasad Katti; Michele Stucchi; Wim Dehaene; Antonis Papanikolaou; Diederik Verkest; Bart Swinnen; Eric Beyne

It is widely acknowledged that three-dimensional (3-D) technologies offer numerous opportunities for system design. In recent years, significant progress has been made on these 3-D technologies, and they have become probably the best hope for carrying the semiconductor industry beyond the path of Moores law. However, a clear roadmap is missing to successfully introduce this 3-D technology onto the market. Today, a plurality of 3-D technology options exists, which requires different design and test strategies. To crystallize the many technology options in a few mainstream technologies, it is mandatory to coexplore both technology and design options. The contribution of this paper is to introduce a novel path finding methodology to untangle the many intertwined design/technology options. This holistic approach will be applied on a representative 3-D case study. Initial results demonstrate the benefits of the proposed path-finding methodology to steer the technology development and fine-tune design strategies.


IEEE Signal Processing Magazine | 2007

Green Reconfigurable Radio Systems

A. Dejonghe; Bruno Bougard; S. Pollin; J. Craninckx; A. Bourdoux; L. Ven der Perre; Francky Catthoor

The wireless standards scene and its evolution strengthens the need for functional flexibility in future radios. Multimode terminals supporting an increasingly large variety of standards (cellular, WLANs, WMANs, WPANs) are subject to a cost increase that is addressed by more flexible radio interfaces. Energy efficiency, however, is the main obstacle to successfully deploying such reconfigurable radios. To address this, it is essential to design energy-scalable SDRs, both for the radio front-end and the digital baseband platform. Complementing this, an essential ingredient is an intelligent controller that optimally exploits this scalability and the run-time dynamics to translate potential energy scalability to actual low-power operation. To realize this goal, an energy-aware cross-layer radio management framework is introduced. It was instantiated in different case studies, showing the applicability of this approach in realistic setups. Results have shown that substantial gains can be achieved through effective cross-layer optimization and problem partitioning. Next, it was shown that SDRs will play a crucial role in enabling CRs, which will enable saving on both the scarce radio spectrum and battery lifetime. A key building block for the design of such CRs, i.e., the appropriate control intelligence to make the SDR platform cognitive, can be derived by incrementally building on the proposed framework. As a result, green (or environment friendly) reconfigurable radio systems will emerge, which offer a wide variety and ubiquitous availability of wireless services, while overcoming energy and spectrum scarcity


international solid-state circuits conference | 2003

A scalable 8.7nJ/bit 75.6Mb/s parallel concatenated convolutional (turbo-) CODEC

Bruno Bougard; A. Giulietti; Veerle Derudder; Jan-Willem Weijers; Steven Dupont; Lieven Hollevoet; Francky Catthoor; L. Van der Perre; H. De Man; Rudy Lauwereins

A 6 to 75.6Mb/s turbo CODEC with block size from 32 to 432, code rate from 1/3 to 3/4, 5.35/spl mu/s/block decoding latency and up to 8.25dB coding gain is described. This IC is fabricated in a 0.18/spl mu/m process and has a core area of 7.16mm/sup 2/. Energy-optimized architecture reduces the energy per bit to 8.7nJ and is almost constant over the throughput range.


international symposium on microarchitecture | 2008

A Coarse-Grained Array Accelerator for Software-Defined Radio Baseband Processing

Bruno Bougard; B. De Sutter; Diederik Verkest; L. Van der Perre; Rudy Lauwereins

A shrinking energy budget for mobile devices and increasingly complex communication standards make architecture development for software-defined radio very challenging. Coarse-grained array accelerators are strong candidates for achieving both high performance and low power. The C-programmable hybrid CGA-SIMD accelerator presented here targets emerging broadband cellular and wireless LAN standards, achieving up to 100-Mbps throughput with an average power consumption of 220 mW.


international conference on communications | 2008

Selective Spanning with Fast Enumeration: A Near Maximum-Likelihood MIMO Detector Designed for Parallel Programmable Baseband Architectures

Min Li; Bruno Bougard; Eduardo Lopez; A. Bourdoux; David Novo; L. Van der Perre; Francky Catthoor

ML and near-ML MIMO detectors have attracted a lot of interest in recent years. However, almost all of the reported implementations are delivered in ASIC or FPGA. Our contribution is to co-optimize the near-ML MIMO detector algorithm and implementation for parallel programmable base-band architectures, such as DSPs with VLIW, SIMD or vector processing features. Although for hardware the architecture can be tuned to fit algorithms, for programmable platforms the algorithm must be elaborately designed to fit the given architecture, so that efficient resource-utilizations can be achieved. By thoroughly analyzing and exploiting the interaction between algorithms and architectures, we propose the SSFE (selective spanning with fast enumeration) as an architecture-friendly near-ML MIMO detector. The SSFE has a distributed and greedy algorithmic structure that brings a completely deterministic and regular dataflow. The SSFE has been evaluated for coded OFDM transmissions over 802.11n channels and 3GPP channels. Under the same performance constraints, the complexity of the SSFE is significantly lower than the K-Best, the most popular detector implemented in hardware. More importantly, SSFE can be easily parallelized and efficiently mapped on programmable baseband architectures. With TI TMS320C6416, the SSFE delivers 37.4 - 125.3 Mbps throughput for 4x4 64 QAM transmissions. To the best of our knowledge, this is the first reported near-ML MIMO detector explicitly designed for parallel programmable architectures and demonstrated on a real-life platform.


Eurasip Journal on Wireless Communications and Networking | 2007

Smart MIMO: an energy-aware adaptive MIMO-OFDM radio link control for next-generation wireless local area networks

Bruno Bougard; Gregory Lenoir; Antoine Dejonghe; Liesbet Van der Perre; Francky Catthoor; Wim Dehaene

Multiantenna systems and more particularly those operating on multiple input and multiple output (MIMO) channels are currently a must to improve wireless links spectrum efficiency and/or robustness. There exists a fundamental tradeoff between potential spectrum efficiency and robustness increase. However, multiantenna techniques also come with an overhead in silicon implementation area and power consumption due, at least, to the duplication of part of the transmitter and receiver radio front-ends. Although the area overhead may be acceptable in view of the performance improvement, low power consumption must be preserved for integration in nomadic devices. In this case, it is the tradeoff between performance (e.g., the net throughput on top of the medium access control layer) and average power consumption that really matters. It has been shown that adaptive schemes were mandatory to avoid that multiantenna techniques hamper this system tradeoff. In this paper, we derive smartMIMO: an adaptive multiantenna approach which, next to simply adapting the modulation and code rate as traditionally considered, decides packet-per-packet, depending on the MIMO channel state, to use either space-division multiplexing (increasing spectrum efficiency), space-time coding (increasing robustness), or to stick to single-antenna transmission. Contrarily to many of such adaptive schemes, the focus is set on using multiantenna transmission to improve the link energy efficiency in real operation conditions. Based on a model calibrated on an existing reconfigurable multiantenna transceiver setup, the link energy efficiency with the proposed scheme is shown to be improved by up to 30% when compared to nonadaptive schemes. The average throughput is, on the other hand, improved by up to 50% when compared to single-antenna transmission.


wireless communications and networking conference | 2008

Performance Analysis of Slotted Carrier Sense IEEE 802.15.4 Acknowledged Uplink Transmissions

Sofie Pollin; Mustafa Ergen; Sinem Coleri Ergen; Bruno Bougard; Francky Catthoor; Ahmad Bahai; Pravin Varaiya

Advances in low-power and low-cost sensor networks have led to solutions mature enough for use in a broad range of applications, requiring various degrees of reliability. To facilitate this, a broad range of options are possible to tune reliability, throughput or energy cost in the IEEE 802.15.4 standard defining the medium access control (MAC) and physical layer for sensor networks. Knowing how to tune those knobs however requires detailed models of the protocol behavior under different conditions. In our earlier work, we have proposed a very accurate model for the slotted Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) access scheme of the IEEE 802.15.4 standard for the unacknowledged transmission mode. Because of the design of the 802.15.4 carrier sensing mechanism, modeling the performance of the network in case of acknowledged transmissions is not a trivial extension. In this paper, we hence derive such model and illustrate through simulations that it is extremely accurate. Next, using the model, guidelines are derived to optimize the energy or throughput performance of sensor networks using the IEEE 802.15.4 standard.

Collaboration


Dive into the Bruno Bougard's collaboration.

Top Co-Authors

Avatar

Francky Catthoor

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

L. Van der Perre

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

David Novo

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Min Li

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Sofie Pollin

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Wim Dehaene

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Antoine Dejonghe

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Gregory Lenoir

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Veerle Derudder

Katholieke Universiteit Leuven

View shared research outputs
Researchain Logo
Decentralizing Knowledge