Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bruno Conti is active.

Publication


Featured researches published by Bruno Conti.


Science | 2011

Endocannabinoid Hydrolysis Generates Brain Prostaglandins That Promote Neuroinflammation

Daniel K. Nomura; Bradley E. Morrison; Jacqueline L. Blankman; Jonathan Z. Long; Steven G. Kinsey; Maria Cecilia G. Marcondes; Anna M. Ward; Yun Kyung Hahn; Aron H. Lichtman; Bruno Conti; Benjamin F. Cravatt

A new tissue-specific pathway for the synthesis of proinflammatory prostaglandins is described. Phospholipase A2(PLA2) enzymes are considered the primary source of arachidonic acid for cyclooxygenase (COX)–mediated biosynthesis of prostaglandins. Here, we show that a distinct pathway exists in brain, where monoacylglycerol lipase (MAGL) hydrolyzes the endocannabinoid 2-arachidonoylglycerol to generate a major arachidonate precursor pool for neuroinflammatory prostaglandins. MAGL-disrupted animals show neuroprotection in a parkinsonian mouse model. These animals are spared the hemorrhaging caused by COX inhibitors in the gut, where prostaglandins are instead regulated by cytosolic PLA2. These findings identify MAGL as a distinct metabolic node that couples endocannabinoid to prostaglandin signaling networks in the nervous system and suggest that inhibition of this enzyme may be a new and potentially safer way to suppress the proinflammatory cascades that underlie neurodegenerative disorders.


Frontiers in Bioscience | 2004

Cytokines and fever.

Bruno Conti; Iustin V. Tabarean; Andrei C; Tamas Bartfai

Cytokines are highly inducible, secreted proteins mediating intercellular communication in the nervous and immune system. Fever is the multiphasic response of elevation and decline of the body core temperature regulated by central thermoregulatory mechanisms localized in the preoptic area of the hypothalamus. The discovery that several proinflammatory cytokines act as endogenous pyrogens and that other cytokines can act as antipyretic agents provided a link between the immune and the central nervous systems and stimulated the study of the central actions of cytokines. The proinflammatory cytokines interleukin 1 (IL-1), interleukin 6 (IL-6) and the tumor necrosis factor alpha (TNF) as well as the antiinflammatory cytokines interleukin 1 receptor antagonist (IL-1ra) and interleukin 10 (IL-10) have been most investigated for their pyrogenic or antipyretic action. The experimental evidence demonstrating the role of these secreted proteins in modulating the fever response is as follows: 1) association between cytokine levels in serum and CSF and fever; 2) finding of the presence of cytokine receptors on various cell types in the brain and demonstration of the effects of pharmacological application of cytokines and of their neutralizing antibodies on the fever response; 3) fever studies on cytokine- and cytokine receptor- transgenic models. Studies on the peripheral and the central action of cytokines demonstrated that peripheral cytokines can communicate with the brain in several ways including stimulation of afferent neuronal pathways and induction of the synthesis of a non cytokine pyrogen, i.e. PGE2, in endothelial cells in the periphery and in the brain. Cytokines synthesized in the periphery may act by crossing the blood brain barrier and acting directly via neuronal cytokine receptors. The mechanisms that ultimately mediate the central action of cytokines and of LPS on the temperature-sensitive neurons in the preoptic hypothalamic region involved in thermoregulation, directly or via second mediators, remain to be fully elucidated.


The Journal of Neuroscience | 2006

A Specific Role for NR2A-Containing NMDA Receptors in the Maintenance of Parvalbumin and GAD67 Immunoreactivity in Cultured Interneurons

Jefferson W. Kinney; Christopher N. Davis; Iustin V. Tabarean; Bruno Conti; Tamas Bartfai; M. Margarita Behrens

Several lines of evidence suggest that a hypoglutamatergic condition may induce a phenotypic loss of cortical parvalbumin (PV)-positive GABAergic interneurons, such as that observed in brain tissue of schizophrenic subjects. However, it is not known whether the loss of PV interneurons is a consequence of the hypoglutamatergic condition or a secondary aspect of the disease. We characterized the signaling and subunit expression of NMDA receptors in cultured cortical PV interneurons and determined whether a hypoglutamatergic condition, created by direct application of sublethal concentrations of ketamine or subunit-selective NMDA receptor antagonists, can affect the expression of the GABAergic markers as observed in vivo. Real-time PCR performed on mRNA isolated from single neurons showed that PV interneurons present a fivefold higher NR2A/NR2B ratio than pyramidal neurons. Brief, nontoxic, exposure to NMDA led to an increase in ERK1/2 (extracellular signal-regulated kinase 1/2) and cAMP response element-binding protein phosphorylation in PV interneurons, and this increase was blocked by the NR2A-selective antagonist NVP-AAM077. Application of the nonselective NMDA receptor antagonist ketamine, at sublethal concentrations, induced a time and dose-dependent decrease in parvalbumin and GAD67 immunoreactivity specifically in PV interneurons. These effects were reversible and were also observed with the NR2A-selective antagonist, whereas the NR2B-selective antagonist Ro-25-6981 only partially reduced GAD67 immunoreactivity. Coexposure to the calcium channel opener BayK, or the group I metabotropic glutamate receptor agonist DHPG [(RS)-3,5-dihydroxyphenylglycine] attenuated the decrease in GAD67 and parvalbumin induced by the NMDA receptor antagonists. These results suggest that the activity of NR2A-containing NMDA receptors play a pivotal role in the maintenance of the GABAergic function of PV interneurons.


Nature Immunology | 2010

IL-1 family nomenclature

Charles A. Dinarello; William P. Arend; John E. Sims; Dirk E. Smith; Hal Blumberg; Luke A. J. O'Neill; Raphaela Goldbach-Mansky; Theresa T. Pizarro; Hal M. Hoffman; Philip Bufler; Marcel F. Nold; Pietro Ghezzi; Alberto Mantovani; Cecilia Garlanda; Diana Boraschi; Anna Rubartelli; Mihai G. Netea; Jos W. M. van der Meer; Leo A. B. Joosten; Thomas Mandrup-Poulsen; Marc Y. Donath; Eli C. Lewis; Josef Pfeilschifter; Michael Martin; Michael Kracht; H. Muehl; Daniela Novick; Miodrag L. Lukic; Bruno Conti; Alan M. Solinger

To the Editor: Newly cloned interleukin 1 (IL-1) family members1–3 were originally given an IL-1 family (IL-1F) designation4, but as functions have now been elucidated for several of these5,6, we propose that each now be assigned an individual interleukin designation. IL-1F6, IL-1F8 and IL-1F9 are encoded by distinct genes but use the same receptor complex (IL-1Rrp2 and AcP), are proinflammatory and deliver nearly identical signals7–12. We propose these be designated IL-36α, IL-36β and IL-36γ, respectively. IL-1F5 also binds to IL-1Rrp2 but antagonizes those cytokines in a manner analogous to that used by IL-1Ra to antagonize IL-1α and IL-1β7–9. We propose that IL-1F5 be renamed IL-36Ra (for ‘receptor antagonist’). In the IL-1 nomenclature, IL-1Ra is used for the natural product, whereas IL-1ra is used for the recombinant product; therefore, IL-36Ra is appropriate for natural IL-1F5. IL-1F7 produces anti-inflammatory effects by suppressing innate immune responses; it does this by decreasing the production of inflammatory cytokines induced by Toll-like receptor agonists as well as that of IL-1 and tumor necrosis factor13,14. We propose this IL-1 family member be renamed IL-37. IL-1F7 has various splice forms1,2,15,16, of which IL-1F7b is the most studied. We propose that IL-1F7a, IL-1F7b and so on be renamed IL-37a, IL-37b and so on. The one remaining IL-1 family member, for which no function has yet been demonstrated, is IL-1F10; however, as evidence of its properties remains limited, we suggest that it retain its IL-1F designation until a function is clearly identified, although it might be prudent to reserve the designation IL-38 for this eventuality.


Molecular Brain Research | 1999

Cultures of astrocytes and microglia express interleukin 18

Bruno Conti; Larry Park; Noel Y. Calingasan; Yoon-Seong Kim; Hocheol Kim; Youngmee Bae; Gary E. Gibson; Tong H. Joh

Interleukin 18 (IL-18 or interferon-gamma inducing factor) is a recently discovered pro-inflammatory cytokine and powerful stimulator of the cell-mediated immune response. IL-18 is produced by several sources including monocytes/macrophages, keratinocytes and the zona reticularis and zona fasciculata of the adrenal cortex. IL-18 occurs in brain but its cellular source in the CNS has never been investigated. The presence of IL-18 and its response to stimulation in the brain was tested with primary cultures of microglia, astrocytes and hippocampal neurons. IL-18 mRNA was present in astrocytes and microglia, but not in neurons. The endotoxin lipopolysaccharide (LPS) did not affect IL-18 in astrocytes, but LPS robustly increased IL-18 mRNA in microglia. IL-18 protein was constitutively expressed in astrocytes and induced in microglia by LPS. The levels of interleukin-1beta converting enzyme (ICE), an activating enzyme, and caspase 3 (CPP32), an inactivating enzyme, were assessed to investigate the presence of the appropriate processing enzymes in the cultured cells. ICE was present at constitutive levels in microglia and astrocytes suggesting that these cell types may produce and secrete matured IL-18. Active forms of CPP32 were not detectable in either cell type indicating the absence of a degradative pathway of IL-18. The present results demonstrate that microglia and astrocytes are sources of brain IL-18 and add a new member to the family of cytokines produced in the brain.


Journal of Biological Chemistry | 1997

INDUCTION OF INTERFERON-GAMMA INDUCING FACTOR IN THE ADRENAL CORTEX

Bruno Conti; Jeong Won Jahng; Cristina Tinti; Jin H. Son; Tong H. Joh

Interferon-γ inducing factor (IGIF) is a recently identified cytokine also called interleukin-1γ (IL-1γ) or interleukin-18 (IL-18). Its biological activity is pleiotropic, and, so far, it has been shown to induce interferon-γ production in Th1 cells, to augment the production of granulocyte-macrophage-CSF, and to decrease that of interleukin-10 (IL-10). We first detected newly synthesized IGIF mRNA by differential display in the adrenal gland of reserpine-treated rats and then isolated two transcripts by reverse transcription polymerase chain reaction. They were identified as rat IGIF on the basis of the high homology with mouse: 91% at both the nucleotide and the amino acid level. Subsequently, we investigated the effects of stress on IGIF mRNA levels and found that acute cold stress strongly induced IGIF gene expression. In situ hybridization analysis showed that IGIF is synthesized in the adrenal cortex, specifically in the zona reticularis and fasciculata that produce glucocorticoids. The presence of IGIF mRNA was also detected in the neurohypophysis although induction by stress was not significant. Our results call for more attention to the role of the adrenal gland as a potential effector of immunomodulation and suggest that IGIF itself might be a secreted neuroimmunomodulator and play an important role in orchestrating the immune system following a stressful experience.


Neurobiology of Disease | 2005

Mice devoid of prion protein have cognitive deficits that are rescued by reconstitution of PrP in neurons

José R. Criado; Manuel Sanchez-Alavez; Bruno Conti; Jeannie L. Giacchino; Derek N. Wills; Steven J. Henriksen; Richard E. Race; Jean Manson; Bruce Chesebro; Michael B. A. Oldstone

Prion protein (PrP(C)) is a constituent of most normal mammalian cells and plays an essential role in the pathogenesis of transmissible spongiform encephalopathies (TSE). However, the normal cellular function of PrP(C) remains unclear. Here, we document that mice with a selective deletion of PrP(C) exhibited deficits in hippocampal-dependent spatial learning, but non-spatial learning remained intact. mPrP-/- mice also showed reduction in paired-pulse facilitation and long-term potentiation in the dentate gyrus in vivo. These deficits were rescued in transgenic mPrP-/- mice expressing PrP(C) in neurons under control of the neuron-specific enolase (NSE) promoter indicating that they were due to lack of PrP(C) function in neurons. The deficits were seen in mPrP-/- mice with a homogeneous 129/Ola background and in mPrP-/- mice in the mixed (129/Ola x C57BL/10) background indicating that these abnormalities were unlikely due to variability of background genes or alteration of the nearby Prnd (doppel) gene.


Molecular Psychiatry | 2007

Region-specific transcriptional changes following the three antidepressant treatments electro convulsive therapy, sleep deprivation and fluoxetine.

Bruno Conti; Rainer Maier; Alasdair M. Barr; Maria Concetta Morale; Xiaoying Lu; Pietro Paolo Sanna; Graeme Bilbe; Daniel Hoyer; Tamas Bartfai

The significant proportion of depressed patients that are resistant to monoaminergic drug therapy and the slow onset of therapeutic effects of the selective serotonin reuptake inhibitors (SSRIs)/serotonin/noradrenaline reuptake inhibitors (SNRIs) are two major reasons for the sustained search for new antidepressants. In an attempt to identify common underlying mechanisms for fast- and slow-acting antidepressant modalities, we have examined the transcriptional changes in seven different brain regions of the rat brain induced by three clinically effective antidepressant treatments: electro convulsive therapy (ECT), sleep deprivation (SD), and fluoxetine (FLX), the most commonly used slow-onset antidepressant. Each of these antidepressant treatments was applied with the same regimen known to have clinical efficacy: 2 days of ECT (four sessions per day), 24 h of SD, and 14 days of daily treatment of FLX, respectively. Transcriptional changes were evaluated on RNA extracted from seven different brain regions using the Affymetrix rat genome microarray 230 2.0. The gene chip data were validated using in situ hybridization or autoradiography for selected genes. The major findings of the study are: The transcriptional changes induced by SD, ECT and SSRI display a regionally specific distribution distinct to each treatment.The fast-onset, short-lived antidepressant treatments ECT and SD evoked transcriptional changes primarily in the catecholaminergic system, whereas the slow-onset antidepressant FLX treatment evoked transcriptional changes in the serotonergic system.ECT and SD affect in a similar manner the same brain regions, primarily the locus coeruleus, whereas the effects of FLX were primarily in the dorsal raphe and hypothalamus, suggesting that both different regions and pathways account for fast onset but short lasting effects as compared to slow-onset but long-lasting effects. However, the similarity between effects of ECT and SD is somewhat confounded by the fact that the two treatments appear to regulate a number of transcripts in an opposite manner.Multiple transcripts (e.g. brain-derived neurotrophic factor (BDNF), serum/glucocorticoid-regulated kinase (Sgk1)), whose level was reported to be affected by antidepressants or behavioral manipulations, were also found to be regulated by the treatments used in the present study. Several novel findings of transcriptional regulation upon one, two or all three treatments were made, for the latter we highlight homer, erg2, HSP27, the proto oncogene ret, sulfotransferase family 1A (Sult1a1), glycerol 3-phosphate dehydrogenase (GPD3), the orphan receptor G protein-coupled receptor 88 (GPR88) and a large number of expressed sequence tags (ESTs).Transcripts encoding proteins involved in synaptic plasticity in the hippocampus were strongly affected by ECT and SD, but not by FLX.The novel transcripts, concomitantly regulated by several antidepressant treatments, may represent novel targets for fast onset, long-duration antidepressants.


Journal of Neuroinflammation | 2010

Interleukin 18 in the CNS

Silvia Alboni; Davide Cervia; Shuei Sugama; Bruno Conti

Interleukin (IL)-18 is a cytokine isolated as an important modulator of immune responses and subsequently shown to be pleiotropic. IL-18 and its receptors are expressed in the central nervous system (CNS) where they participate in neuroinflammatory/neurodegenerative processes but also influence homeostasis and behavior. Work on IL-18 null mice, the localization of the IL-18 receptor complex in neurons and the neuronal expression of decoy isoforms of the receptor subunits are beginning to reveal the complexity and the significance of the IL-18 system in the CNS. This review summarizes current knowledge on the central role of IL-18 in health and disease.


Neuroscience | 2007

Stress induced morphological microglial activation in the rodent brain: Involvement of interleukin-18

Shuei Sugama; Masayo Fujita; Makoto Hashimoto; Bruno Conti

The present study investigated the possibility that acute stress might activate microglial cells. Wistar rats were exposed to 2 h period of restraint combined with water immersion stress prior to brain analysis by immunohistochemistry with OX-42, a marker of complement receptor CR3. A single session of stress provoked robust morphological microglial activation in the thalamus, hypothalamus, hippocampus, substantia nigra and central gray. These effects appeared as early as at 1 h of exposure and were further intensified at 2 h. Morphological activation was not accompanied with changes in markers of functional activation or of inflammation including interleukin-1beta (IL-1beta), interleukin-6 (IL-6) and inducible nitric oxide synthase (iNOS). Similar results were obtained with mice where the effects of stress were compared in animals null for interleukin-18 (IL-18 KO), a cytokine previously demonstrated to be modulated by stress and to contribute to microglia activation. The results demonstrated significant reduction of stress-induced microglial activation in IL-18 KO mice. The present study reports evidence that physical/emotional stress may induce morphological microglial activation in the brain and this activation is in part mediated by interleukin-18.

Collaboration


Dive into the Bruno Conti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tamas Bartfai

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric P. Zorrilla

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Simone Mori

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

William Nguyen

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge