Bruno Corrêa Bellagamba
Universidade Luterana do Brasil
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bruno Corrêa Bellagamba.
Stem Cells and Development | 2012
Claudia Concer Viero Nora; Melissa Camassola; Bruno Corrêa Bellagamba; Nilo Ikuta; Ana Paula Christoff; Lindolfo da Silva Meirelles; Raquel Ayres; Rogério Margis; Nance Beyer Nardi
Mesenchymal stem cells (MSCs) have received great attention due to their remarkable regenerative, angiogenic, antiapoptotic, and immunosuppressive properties. Although conventionally isolated from the bone marrow, they are known to exist in all tissues and organs, raising the question on whether they are identical cell populations or have important differences at the molecular level. To better understand the relationship between MSCs residing in different tissues, we analyzed the expression of genes related to pluripotency (SOX2 and OCT-4) and to adipogenic (C/EBP and ADIPOR1), osteogenic (OMD and ALP), and chondrogenic (COL10A1 and TRPV4) differentiation in cultures derived from murine endodermal (lung) and mesodermal (adipose) tissue maintained in different conditions. MSCs were isolated from lungs (L-MSCs) and inguinal adipose tissue (A-MSCs) and cultured in normal conditions, in overconfluence or in inductive medium for osteogenic, adipogenic, or chondrogenic differentiation. Cultures were characterized for morphology, immunophenotype, and by quantitative real-time reverse transcription-polymerase chain reaction for expression of pluripotency genes or markers of differentiation. Bone marrow-derived MSCs were also analyzed for comparison of these parameters. L-MSCs and A-MSCs exhibited the typical morphology, immunophenotype, and proliferation and differentiation pattern of MSCs. The analysis of gene expression showed a higher potential of adipose tissue-derived MSCs toward the osteogenic pathway and of lung-derived MSCs to chondrogenic differentiation, representing an important contribution for the definition of the type of cell to be used in clinical trials of cell therapy and tissue engineering.
Food and Chemical Toxicology | 2010
Cristiane Cademartori Danesi; Bruno Corrêa Bellagamba; Rafael Rodrigues Dihl; Heloísa Helena Rodrigues de Andrade; Kênya Silva Cunha; Mauricio Lehmann
The somatic mutation and recombination test in Drosophila melanogaster was applied to analyze the mutagenic and recombinagenic activity of the chemotherapeutic drugs cisplatin, paclitaxel, and 5-fluorouracil, comparing the effects observed in combinatory treatments with those observed in single administrations. The results obtained in two different genotypes allowed to quantitatively and qualitatively estimate the contribution of genotoxic effects. The results obtained with the individual drug treatments showed that cisplatin and 5-fluorouracil were genotoxic, being able to increase the frequency of total spots on both genotypes. While cisplatin preferentially induced DNA damage of recombinational origin, all the damages induced by 5-fluorouracil were caused by gene and/or chromosome mutations, and the aneuploidogenic compound paclitaxel was not genotoxic. The combination of these drugs does not exert a synergist genotoxic effect in both genotypes compared to the single-agent administration. Instead, it was observed a modification in the proportion of mutation and recombination to the final genotoxicity observed. The antiproliferative activity of PAC could be responsible for the non-synergic genotoxic effect observed. Based on our results it is possible to suggest that cisplatin/paclitaxel/5-fluorouracil treatment regimen cannot impose a higher risk of the development of genotoxicity-associated secondary tumors in comparison to their individual applications.
Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2010
Cristiane Cademartori Danesi; Bruno Corrêa Bellagamba; Rafael Rodrigues Dihl; Heloísa Helena Rodrigues de Andrade; Kênya Silva Cunha; Mário Antônio Spanó; Maria Luiza Reguly; Mauricio Lehmann
Recent studies have added paclitaxel (PAC) to traditional cisplatin (CIS) regimen to treat squamous cell carcinoma of the head and neck. The target of these antineoplastic agents is nuclear DNA for CIS and microtubules for PAC, although it is not restricted to malignant cells. In this study, the genotoxicity of the combined treatment of PAC and CIS was investigated using the standard version of the wing Somatic Mutation and Recombination Test (SMART) in Drosophila melanogaster. Quantitative and qualitative genotoxic effects of these compounds were estimated by comparing wing spot frequencies in marker-heterozygous to balancer-heterozygous flies. Two different concentrations of PAC (0.0025 and 0.005mM) and CIS (0.025 and 0.05mM) as well as combinations of them were employed. The results demonstrated that the spindle poison PAC alone was not genotoxic in this test system, while CIS was able to induce a high incidence of DNA damage in both genotypes, mainly related to somatic recombination. The data obtained for the combined treatments showed that its genotoxicity varied with the concentrations used. In small concentrations the number of total spots induced by combination was reduced in relation to CIS 0.025mM just for marker-heterozygous flies, showing that somatic recombination was the prevalent event involved. At higher concentrations the combined treatment showed significant reductions in the frequencies of large single spots, for both genotypes, and twin spots for marker-heterozygous flies, but did not significantly reduce the total spots frequency in either genotype. The data suggest that aneugenic activity of PAC could be responsible for the reduction in the genotoxicity of CIS.
Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2012
Cristiane Cademartori Danesi; Rafael Rodrigues Dihl; Bruno Corrêa Bellagamba; Heloisa Helena Rodrigues de Andrade; Kênya Silva Cunha; Nilza Nascimento Guimarães; Mauricio Lehmann
The simultaneous treatment with the cross-linking agent cisplatin, the radiomimetic antitumoral drug bleomycin, and the anti-metabolite drug 5-fluorouracil has been used as a regimen to treat patients with squamous cell carcinoma of the head and neck. Considering that these drugs interact directly with DNA, one of the important late-occurring complications from treatment of primary malignancies is the therapy-related secondary cancers as a result of the genotoxic activity of the drugs on normal cells. In this sense, the genotoxicity of this combination was evaluated using the wing somatic mutation and recombination test in Drosophila melanogaster. The mutant spots observed in marker-heterozygous and balancer-heterozygous flies were compared in order to quantitatively and qualitatively estimate the genotoxic effect of these drugs. Cisplatin (0.003 and 0.006mM), bleomycin (0.005 and 0.01mM), and both combinations preferentially induced recombinational events, while mutation is the major event regarding the genetic toxicity of 5-fluorouracil (0.025 and 0.05mM). The combination of these drugs produced synergistic and antagonistic genotoxic effects, depending on the concentrations used, which could impose a higher risk of secondary effects associated with their genotoxic effects, emphasizing the importance of long-term monitoring in patients being treated with these drugs.
Stem Cells International | 2018
Bruno Corrêa Bellagamba; Patrícia Bencke Grudzinski; Pedro Bins Ely; Paulo de Jesus Nader; Nance Beyer Nardi; Lindolfo da Silva Meirelles
Cultured mesenchymal stromal cells (MSCs) are cells that can be used for tissue engineering or cell therapies owing to their multipotency and ability to secrete immunomodulatory and trophic molecules. Several studies suggest that MSCs can become pericytes when cocultured with endothelial cells (ECs) but failed to use pericyte markers not already expressed by MSCs. We hypothesized ECs could instruct MSCs to express the molecules CD271 or CD34, which are expressed by pericytes in situ but not by MSCs. CD271 is a marker of especial interest because it is associated with multipotency, a characteristic that wanes in MSCs as they are culture expanded. Consequently, surface expression of CD271 and CD34 was detected in roughly half of the MSCs cocultured with ECs as spheroids in the presence of insulin-like growth factor 1 (IGF-1). Conversely, expression of CD271 and CD34 was detected in a similar proportion of MSCs cultured under these conditions without ECs, and expression of these markers was low or absent when no IGF-1 was added. These findings indicate that specific culture conditions including IGF-1 can endow cultured MSCs with expression of CD271 and CD34, which may enhance the multipotency of these cells when they are used for therapeutic purposes.
Chemosphere | 2017
Cynthia Silva Porta; Débora Lemes dos Santos; Hélio Vieira Bernardes; Bruno Corrêa Bellagamba; A.C. Duarte; Johnny Ferraz Dias; Fernanda Rabaioli da Silva; Mauricio Lehmann; Juliana da Silva; Rafael Rodrigues Dihl
XVII FÓRUM DE PESQUISA CIENTÍFICA E TECNOLÓGICA | 2017
Patrícia Bencke Grudzinski; Bruno Corrêa Bellagamba; Thailine Ávila dos Santos; Lindolfo da Silva Meirelles
XVI FÓRUM DE PESQUISA CIENTÍFICA E TECNOLÓGICA | 2016
Rosângela Dos Reis Nunes; Bruno Corrêa Bellagamba; Patrícia Bencke Grudzinski; Gabriela da Silva Peters; Leo Doncatto; Vanessa Gaissler; Pedro Bins Ely
XXI SALÃO DE INICIAÇÃO CIENTÍFICA E TECNOLÓGICA | 2014
Felipe de Almeida Narciso; Bruno Corrêa Bellagamba; Pedro Bins Ely; Lindolfo da Silva Meirelles
XX SALÃO DE INICIAÇÃO CIENTÍFICA E TECNOLÓGICA | 2014
Gabriela da Silva Peters; Bruno Corrêa Bellagamba; Patrícia Bencke Grudzinski; Pedro Bins Ely; Lindolfo da Silva Meirelles