Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bruno Coulomb is active.

Publication


Featured researches published by Bruno Coulomb.


Science of The Total Environment | 2012

Effect of coupled UV-A and UV-C LEDs on both microbiological and chemical pollution of urban wastewaters

A.-C. Chevremont; Anne-Marie Farnet; Bruno Coulomb; Jean-Luc Boudenne

Wastewater reuse for irrigation is an interesting alternative for many Mediterranean countries suffering from water shortages. The development of new technologies for water recycling is a priority for these countries. In this study we test the efficiency of UV-LEDs (Ultraviolet-Light-Emitting Diodes) emitting UV-A or UV-C radiations, used alone or coupled, on bacterial and chemical indicators. We monitored the survival of fecal bioindicators found in urban wastewaters and the oxidation of creatinine and phenol which represent either conventional organic matter or the aromatic part of pollution respectively. It appears that coupling UV-A/UV-C i) achieves microbial reduction in wastewater more efficiently than when a UV-LED is used alone, and ii) oxidizes up to 37% of creatinine and phenol, a result comparable to that commonly obtained with photoreactants such as TiO(2).


Journal of Environmental Management | 2015

Selection of wild macrophytes for use in constructed wetlands for phytoremediation of contaminant mixtures

Anna Guittonny-Philippe; Marie-Eléonore Petit; Véronique Masotti; Yogan Monnier; Laure Malleret; Bruno Coulomb; Isabelle Combroux; Teddy Baumberger; Julien Viglione; Isabelle Laffont-Schwob

Constructed wetlands (CWs) offer an alternative to traditional industrial wastewater treatment systems that has been proved to be efficient, cost-effective and environmentally friendly. Most of the time, CWs are planted with proliferative species such as Phragmites australis or with plants originating from nurseries, both representing a risk for the natural biodiversity conservation of aquatic ecosystems located downstream of the CWs. For the removal of metals and organic pollutant mixtures present in industrial effluents, it is necessary to select tolerant plant species that are able to produce a high aboveground biomass and to develop a healthy belowground system. Wild plant species growing in aquatic bodies at industrial outfalls could constitute suitable tolerant species to use in CWs for industrial effluent treatment. To test this hypothesis, we assessed, under laboratory conditions (using an experimental design), the tolerance to mixtures of metals (Al, As, Cd, Cu, Cr, Fe, Mn, Ni, Pb, Sn, Zn) or/and organic pollutants (THC, PHE, PYR, LAS) of five European sub-cosmopolitan native macrophytes (Alisma lanceolatum, Carex cuprina, Epilobium hirsutum, Iris pseudacorus and Juncus inflexus) that had been collected in a polluted Mediterranean wetland, after a field study (crossing ecological relevés and analyses of contaminant concentrations in water and sediments). Our results demonstrated that research on phytoremediation of industrial effluents should focus much more on the use of native macrophytes growing at short distances from industrial discharges (such as C. cuprina in this study), and that root/shoot ratio, aerial height and proportion of green leaves are good and cost-effective indicators of plant tolerance to metals and organic pollutant mixtures in laboratory studies.


Environment International | 2016

Identification of disinfection by-products in freshwater and seawater swimming pools and evaluation of genotoxicity.

Tarek Manasfi; Michel De Méo; Bruno Coulomb; Carole Di Giorgio; Jean-Luc Boudenne

Exposure to disinfection byproducts (DBPs) in swimming pools has been linked to adverse health effects. Numerous DBPs that occur in swimming pools are genotoxic and carcinogenic. This toxicity is of a greater concern in the case of brominated DBPs that have been shown to have substantially greater toxicities than their chlorinated analogs. In chlorinated seawater swimming pools, brominated DBPs are formed due to the high content of bromide. Nevertheless, very little data is reported about DBP occurrence and mutagenicity of water in these pools. In the present study, three seawater and one freshwater swimming pools located in Southeastern France were investigated to determine qualitatively and quantitatively their DBP contents. An evaluation of the genotoxic properties of water samples of the freshwater pool and a seawater pool was conducted through the Salmonella assay (Ames test). The predominant DBPs identified in the freshwater pool were chlorinated species and included trichloroacetic acid, chloral hydrate, dichloroacetonitrile, 1,1,1-trichloropropanone and chloroform. In the seawater pools, brominated DBPs were the predominant species and included dibromoacetic acid, bromoform and dibromoacetonitile. Bromal hydrate levels were also reported. In both types of pools, haloacetic acids were the most prevalent chemical class among the analyzed DBP classes. The distribution of other DBP classes varied depending on the type of pool. As to genotoxicity, the results of Ames test showed higher mutagenicity in the freshwater pool as a consequence of its considerably higher DBP contents in comparison to the tested seawater pool.


Environmental Science & Technology | 2015

Degradation Products of Benzophenone-3 in Chlorinated Seawater Swimming Pools

Tarek Manasfi; Veronika Storck; Sylvain Ravier; Carine Demelas; Bruno Coulomb; Jean-Luc Boudenne

Oxybenzone (2-hydroxy-4-methoxyphenone, benzophenone-3) is one of the UV filters commonly found in sunscreens. Its presence in swimming pools and its reactivity with chlorine has already been demonstrated but never in seawater swimming pools. In these pools, chlorine added for disinfection results in the formation of bromine, due to the high levels of bromide in seawater, and leads to the formation of brominated disinfection byproducts, known to be more toxic than chlorinated ones. Therefore, it seems important to determine the transformation products of oxybenzone in chlorinated seawater swimming pools; especially that users of seawater swimming pools may apply sunscreens and other personal-care products containing oxybenzone before going to pools. This leads to the introduction of oxybenzone to pools, where it reacts with bromine. For this purpose, the reactivity of oxybenzone has been examined as a function of chlorine dose and temperature in artificial seawater to assess its potential to produce trihalomethanes and to determine the byproducts generated following chlorination. Increasing doses of chlorine and increasing temperatures enhanced the formation of bromoform. Experiments carried out with excess doses of chlorine resulted in the degradation of oxybenzone and allowed the determination of the degradation mechanisms leading to the formation of bromoform. In total, ten transformation products were identified, based on which the transformation pathway was proposed.


International Journal of Hygiene and Environmental Health | 2017

Occurrence, origin, and toxicity of disinfection byproducts in chlorinated swimming pools: An overview

Tarek Manasfi; Bruno Coulomb; Jean-Luc Boudenne

Disinfection treatments are critical to conserve the microbiological quality of swimming pool water and to prevent water-borne infections. The formation of disinfection byproducts (DBPs) in swimming pools is an undesirable consequence resulting from reactions of disinfectants (e.g. chlorine) with organic and inorganic matter present in pool water, mainly brought by bathers. A considerable body of occurrence studies has identified several classes of DBPs in swimming pools with more than 100 compounds detected, mainly in chlorinated freshwater pools. Trihalomethanes (THMs), haloacetic acids (HAAs), haloacetaldehydes (HALs) are among the major DBPs in swimming pools. Other DBPs such as haloacetonitriles (HAN), haloamines, nitrosamines, and halobenzoquinones have also been detected. Researchers have been interested in identifying the precursors responsible for the formation of DBPs. In swimming pools, anthropogenic organic loads brought by swimmers increase the complexity of pool water chemistry. When human inputs (e.g. sweat, urine, hair, skin and personal care products) containing very diverse organic compounds are introduced to pools by swimmers, they react with chlorine resulting in the formation of complex mixtures of DBPs. The overwhelming majority of the total organic halide (TOX) content is still unknown in swimming pools. Exposure of swimmers to DBPs can take place through multiple routes, depending on the chemical properties of each DBP. Toxicological studies have shown that swimming pool water can be mutagenic with different potencies reported in different studies. Many DBPs have been shown to be genotoxic and carcinogenic. DBPs were also shown to induce reproductive and neurotoxic adverse effects in animal studies. Epidemiologic studies in humans have shown that exposure to DBPs increases the risk of respiratory adverse effects and bladder cancer. Association between DBPs and other health effects are still inconclusive. Data gathered in the present review (occurrence, toxicity, and toxicological reference values) could be used in conducting chemical risk assessment studies in swimming pools.


Water Research | 2013

Impact of watering with UV-LED-treated wastewater on microbial and physico-chemical parameters of soil

A.-C. Chevremont; Jean-Luc Boudenne; Bruno Coulomb; Anne-Marie Farnet

Advanced oxidation processes based on UV radiations have been shown to be a promising wastewater disinfection technology. The UV-LED system involves innovative materials and could be an advantageous alternative to mercury-vapor lamps. The use of the UV-LED system results in good water quality meeting the legislative requirements relating to wastewater reuse for irrigation. The aim of this study was to investigate the impact of watering with UV-LED treated wastewaters (UV-LED WW) on soil parameters. Solid-state ¹³C NMR shows that watering with UV-LED WW do not change the chemical composition of soil organic matter compared to soil watered with potable water. Regarding microbiological parameters, laccase, cellulase, protease and urease activities increase in soils watered with UV-LED WW which means that organic matter brought by the effluent is actively degraded by soil microorganisms. The functional diversity of soil microorganisms is not affected by watering with UV-LED WW when it is altered by 4 and 8 months of watering with wastewater (WW). After 12 months, functional diversity is similar regardless of the water used for watering. The persistence of faecal indicator bacteria (coliform and enterococci) was also determined and watering with UV-LED WW does not increase their number nor their diversity unlike soils irrigated with activated sludge wastewater. The study of watering-soil microcosms with UV-LED WW indicates that this system seems to be a promising alternative to the UV-lamp-treated wastewaters.


Analytical Chemistry | 2009

Alternative spectrofluorimetric determination of short-chain volatile fatty acids in aqueous samples.

Fabien Robert-Peillard; Edwin Palacio-Barco; Yves Dudal; Bruno Coulomb; Jean-Luc Boudenne

This paper presents a simple, rapid, and accurate method suitable for on-site measurement of short-chain volatile fatty acids (SCFA) in various environmental samples. This fluorimetric method involves a derivatization step of SCFA with N-(1-naphthyl)ethylenediamine (EDAN) and allows determination of acetic, butyric, propionic, valeric, lactic, succinic, and p-hydroxybenzoic acids in approximatively 10 min. To evaluate specificity and accuracy of the method, both laboratory-made waters and real samples ranging from wastewater plant and river to soils and composts have been tested. Good accuracy and correlation (r(2) = 0.9887) with HPIC determination have been obtained. The potential interference effect has been taken into account with compounds like humic substances, alcohols, amines, aldehydes, and metallic ions. This method seems thus well designed for the determination of total SCFA in waters, in the range 0.84-500 mg/L. Because this method seems well suited for following of anaerobic treatment, it has been calibrated versus acetic acid-equivalent.


Plant and Soil | 2014

As, Pb, Sb, and Zn transfer from soil to root of wild rosemary: do native symbionts matter?

Marie-Cécile Affholder; Anca-Diana Pricop; Isabelle Laffont-Schwob; Bruno Coulomb; Jacques Rabier; Andreea Borla; Carine Demelas; Pascale Prudent

Background and aimsThis is an in natura study aimed to determine the potential of Rosmarinus officinalis for phytostabilization of trace metal and metalloid (TMM)-contaminated soils in the Calanques National Park (Marseille, southeast of France). The link between rosemary tolerance/accumulation of As, Pb, Sb, and Zn and root symbioses with arbuscular mycorrhizal (AM) fungi and/or dark septate endophytes (DSE) was examined.MethodsEight sites along a gradient of contamination were selected for soil and root collections. TMM concentrations were analyzed in all the samples and root symbioses were observed. Moreover, in the roots of various diameters collected in the most contaminated site, X-ray microfluorescence methods were used to determine TMM localization in tissues.ResultsRosemary accumulated, in its roots, the most labile TMM fraction in the soil. The positive linear correlation between TMM concentrations in soil and endophyte root colonization rates suggests the involvement of AM fungi and DSE in rosemary tolerance to TMM. Moreover, a typical TMM localization in root peripheral tissues of thin roots containing endophytes forming AM and DSE development was observed using X-ray microfluorescence.ConclusionsRosemary and its root symbioses appeared as a potential candidate for a phytostabilization process of metal-contaminated soils in Mediterranean area.


Talanta | 2017

3D-printed flow system for determination of lead in natural waters

Elodie Mattio; Fabien Robert-Peillard; Catherine Branger; Kinga Puzio; André Margaillan; Christophe Brach-Papa; Joel Knoery; Jean Luc Boudenne; Bruno Coulomb

The development of 3D printing in recent years opens up a vast array of possibilities in the field of flow analysis. In the present study, a new 3D-printed flow system has been developed for the selective spectrophotometric determination of lead in natural waters. This system was composed of three 3D-printed units (sample treatment, mixing coil and detection) that might have been assembled without any tubing to form a complete flow system. Lead was determined in a two-step procedure. A preconcentration of lead was first carried out on TrisKem Pb Resin located in a 3D-printed column reservoir closed by a tapped screw. This resin showed a high extraction selectivity for lead over many tested potential interfering metals. In a second step, lead was eluted by ammonium oxalate in presence of 4-(2-pyridylazo)-resorcinol (PAR), and spectrophotometrically detected at 520nm. The optimized flow system has exhibited a linear response from 3 to 120µgL-1. Detection limit, coefficient of variation and sampling rate were evaluated at 2.7µgL-1, 5.4% (n=6) and 4 sampleh-1, respectively. This flow system stands out by its fully 3D design, portability and simplicity for low cost analysis of lead in natural waters.


Mutation Research/Mutation Research Genomics | 2017

Assessing the genotoxicity of two commonly occurring byproducts of water disinfection: Chloral hydrate and bromal hydrate

Tarek Manasfi; Michel De Méo; Carole Di Giorgio; Bruno Coulomb; Jean-Luc Boudenne

Water disinfection treatments result in the formation of disinfection byproducts (DBPs) that have been linked to adverse human health outcomes including higher incidence of bladder and colorectal cancer. However, data about the genotoxicity of DBPs is limited to only a small fraction of compounds. Chloral hydrate (CH) and bromal hydrate (BH) are two trihaloacetaldehydes commonly detected in disinfected waters, but little is known about their genotoxicity, especially BH. We investigated the genotoxicity of CH and BH using a test battery that includes three in vitro genotoxicity assays. We conducted the Ames test using Salmonella bacterial strains TA97a, TA98, TA100 and TA102, and the alkaline comet assay and the micronucleus test both using Chinese hamster ovary cells. We carried out the tests in the absence and presence of the metabolic fraction S9 mix. CH did not exhibit statistically significant genotoxic effects in any of the three assays. In contrast, BH exhibited mutagenic activity in the Salmonella strain TA100 and induced statistically significant DNA lesions in CHO cells as appeared in the comet assay. The genotoxic potential of BH in both assays decreased in the presence of the metabolic fraction S9 mix. BH did not induce chromosomal damage in CHO cells. Our results show that BH exhibited genotoxic activity by causing mutations and primary DNA damage while CH did not induce genotoxic effects. Our findings highlight concerns about the higher genotoxicity of brominated DBPs in comparison to their chlorinated analogues.

Collaboration


Dive into the Bruno Coulomb's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carine Demelas

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

Tarek Manasfi

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laure Malleret

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge