Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bruno Dupuy is active.

Publication


Featured researches published by Bruno Dupuy.


Nature Genetics | 2006

The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome.

Mohammed Sebaihia; Brendan W. Wren; Peter Mullany; Neil Fairweather; Nigel P. Minton; Richard A. Stabler; Nicholas R. Thomson; Adam P. Roberts; Ana Cerdeño-Tárraga; Hongmei Wang; Matthew T. G. Holden; Anne Wright; Carol Churcher; Michael A. Quail; Stephen Baker; Nathalie Bason; Karen Brooks; Tracey Chillingworth; Ann Cronin; Paul Davis; Linda Dowd; Audrey Fraser; Theresa Feltwell; Zahra Hance; S. Holroyd; Kay Jagels; Sharon Moule; Karen Mungall; Claire Price; Ester Rabbinowitsch

We determined the complete genome sequence of Clostridium difficile strain 630, a virulent and multidrug-resistant strain. Our analysis indicates that a large proportion (11%) of the genome consists of mobile genetic elements, mainly in the form of conjugative transposons. These mobile elements are putatively responsible for the acquisition by C. difficile of an extensive array of genes involved in antimicrobial resistance, virulence, host interaction and the production of surface structures. The metabolic capabilities encoded in the genome show multiple adaptations for survival and growth within the gut environment. The extreme genome variability was confirmed by whole-genome microarray analysis; it may reflect the organisms niche in the gut and should provide information on the evolution of virulence in this organism.


Molecular Microbiology | 1998

Regulated transcription of Clostridium difficile toxin genes.

Bruno Dupuy; Abraham L. Sonenshein

The Clostridium difficile toxA and toxB genes, encoding cytotoxic and enterotoxic proteins responsible for antibiotic‐associated colitis and pseudomembranous colitis, were shown to be transcribed both from gene‐specific promoters and from promoters of upstream genes. However, the gene‐specific transcripts represented the majority of tox gene mRNAs. The 5′ ends of these mRNAs were shown to correspond to DNA sequences that had promoter activity when fused to the Escherichia coliβ‐glucuronidase (gusA) gene and introduced into C. perfringens. The appearance of tox mRNA in C. difficile was repressed during exponential growth phase but increased substantially as cells entered stationary phase. When glucose or other rapidly metabolizable sugars were present in the medium, the stationary phase‐associated induction was inhibited, indicating that the toxin genes are subject to a form of catabolite repression. This glucose effect was general to many toxinogenic strains having varying levels of toxin production.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Regulation of toxin synthesis in Clostridium difficile by an alternative RNA polymerase sigma factor

Nagraj Mani; Bruno Dupuy

Clostridium difficile, a causative agent of antibiotic-associated diarrhea and its potentially lethal form, pseudomembranous colitis, produces two large protein toxins that are responsible for the cellular damage associated with the disease. The level of toxin production appears to be critical for determining the severity of the disease, but the mechanism by which toxin synthesis is regulated is unknown. The product of a gene, txeR, that lies just upstream of the tox gene cluster was shown to be needed for tox gene expression in vivo and to activate promoter-specific transcription of the tox genes in vitro in conjunction with RNA polymerases from C. difficile, Bacillus subtilis, or Escherichia coli. TxeR was shown to function as an alternative sigma factor for RNA polymerase. Because homologs of TxeR regulate synthesis of toxins and a bacteriocin in other Clostridium species, TxeR appears to be a prototype for a novel mode of regulation of toxin genes.


Molecular Microbiology | 2007

Clostridium difficile toxin expression is inhibited by the novel regulator TcdC

Susana Matamouros; Patrick England; Bruno Dupuy

Clostridium difficile, an emerging nosocomial pathogen of increasing clinical significance, produces two large protein toxins that are responsible for the cellular damage associated with the disease. The precise mechanisms by which toxin synthesis is regulated in response to environmental change have yet to be discovered. The toxin genes (tcdA and tcdB) are located in a pathogenicity locus (PaLoc), along with tcdR and tcdC. TcdR is an alternative RNA polymerase σ factor that directly activates toxin gene expression, while the inverse relationship between expression of tcdR, tcdA and tcdB genes on the one hand and tcdC on the other has led to the suggestion that TcdC somehow interferes with toxin gene expression. This idea is further supported by the finding that many recent C. difficile epidemic strains in which toxin production is increased carry a common tcdC deletion mutation. In this report we demonstrate that TcdC negatively regulates toxin synthesis both in vivo and in vitro. TcdC destabilizes the TcdR‐containing holoenzyme before open complex formation, apparently by interaction with TcdR or TcdR‐containing RNA polymerase holoenzyme or both. In addition, we show that the hypertoxigenicity phenotype of C. difficile epidemic strains is not due to their common 18 bp in‐frame deletion in tcdC.


Journal of Medical Microbiology | 2008

Clostridium difficile toxin synthesis is negatively regulated by TcdC.

Bruno Dupuy; R. Govind; Ana Antunes; S. Matamouros

Clostridium difficile toxin synthesis is growth phase-dependent and is regulated by various environmental signals. The toxin genes tcdA and tcdB are located in a pathogenicity locus, which also includes three accessory genes, tcdR, tcdC and tcdE. TcdR has been shown to act as an alternative sigma factor that mediates positive regulation of both the toxin genes and its own gene. The tcdA, tcdB and tcdR genes are transcribed during the stationary growth phase. The tcdC gene, however, is expressed during exponential phase. This expression pattern suggested that TcdC may act as a negative regulator of toxin gene expression. TcdC is a small acidic protein without any conserved DNA-binding motif. It is able to form dimers and its N-terminal region includes a putative transmembrane domain. Genetic and biochemical evidence showed that TcdC negatively regulates C. difficile toxin synthesis by interfering with the ability of TcdR-containing RNA polymerase to recognize the tcdA and tcdB promoters. In addition, the C. difficile NAP1/027 epidemic strains that produce higher levels of toxins have mutations in tcdC. Interestingly, a frameshift mutation at position 117 of the tcdC coding sequence seems to be, at least in part, responsible for the hypertoxigenicity phenotype of these epidemic strains.


PLOS Pathogens | 2011

The Anti-Sigma Factor TcdC Modulates Hypervirulence in an Epidemic BI/NAP1/027 Clinical Isolate of Clostridium difficile

Glen P. Carter; Gillian Douce; Revathi Govind; Pauline M. Howarth; Kate E. Mackin; Janice Spencer; Anthony M. Buckley; Ana Antunes; Despina Kotsanas; Grant A. Jenkin; Bruno Dupuy; Julian I. Rood; Dena Lyras

Nosocomial infections are increasingly being recognised as a major patient safety issue. The modern hospital environment and associated health care practices have provided a niche for the rapid evolution of microbial pathogens that are well adapted to surviving and proliferating in this setting, after which they can infect susceptible patients. This is clearly the case for bacterial pathogens such as Methicillin Resistant Staphylococcus aureus (MRSA) and Vancomycin Resistant Enterococcus (VRE) species, both of which have acquired resistance to antimicrobial agents as well as enhanced survival and virulence properties that present serious therapeutic dilemmas for treating physicians. It has recently become apparent that the spore-forming bacterium Clostridium difficile also falls within this category. Since 2000, there has been a striking increase in C. difficile nosocomial infections worldwide, predominantly due to the emergence of epidemic or hypervirulent isolates that appear to possess extended antibiotic resistance and virulence properties. Various hypotheses have been proposed for the emergence of these strains, and for their persistence and increased virulence, but supportive experimental data are lacking. Here we describe a genetic approach using isogenic strains to identify a factor linked to the development of hypervirulence in C. difficile. This study provides evidence that a naturally occurring mutation in a negative regulator of toxin production, the anti-sigma factor TcdC, is an important factor in the development of hypervirulence in epidemic C. difficile isolates, presumably because the mutation leads to significantly increased toxin production, a contentious hypothesis until now. These results have important implications for C. difficile pathogenesis and virulence since they suggest that strains carrying a similar mutation have the inherent potential to develop a hypervirulent phenotype.


PLOS Genetics | 2013

Genome-Wide Identification of Regulatory RNAs in the Human Pathogen Clostridium difficile

Olga Soutourina; Marc Monot; Pierre Boudry; Laure Saujet; Christophe Pichon; Odile Sismeiro; Ekaterina Semenova; Konstantin Severinov; Chantal Le Bouguénec; Jean Yves Coppée; Bruno Dupuy; Isabelle Martin-Verstraete

Clostridium difficile is an emergent pathogen, and the most common cause of nosocomial diarrhea. In an effort to understand the role of small noncoding RNAs (sRNAs) in C. difficile physiology and pathogenesis, we used an in silico approach to identify 511 sRNA candidates in both intergenic and coding regions. In parallel, RNA–seq and differential 5′-end RNA–seq were used for global identification of C. difficile sRNAs and their transcriptional start sites at three different growth conditions (exponential growth phase, stationary phase, and starvation). This global experimental approach identified 251 putative regulatory sRNAs including 94 potential trans riboregulators located in intergenic regions, 91 cis-antisense RNAs, and 66 riboswitches. Expression of 35 sRNAs was confirmed by gene-specific experimental approaches. Some sRNAs, including an antisense RNA that may be involved in control of C. difficile autolytic activity, showed growth phase-dependent expression profiles. Expression of each of 16 predicted c-di-GMP-responsive riboswitches was observed, and experimental evidence for their regulatory role in coordinated control of motility and biofilm formation was obtained. Finally, we detected abundant sRNAs encoded by multiple C. difficile CRISPR loci. These RNAs may be important for C. difficile survival in bacteriophage-rich gut communities. Altogether, this first experimental genome-wide identification of C. difficile sRNAs provides a firm basis for future RNome characterization and identification of molecular mechanisms of sRNA–based regulation of gene expression in this emergent enteropathogen.


Journal of Bacteriology | 2002

Environmental Response and Autoregulation of Clostridium difficile TxeR, a Sigma Factor for Toxin Gene Expression

Nagraj Mani; Dena Lyras; Lisa Barroso; Pauline M. Howarth; Tracy D. Wilkins; Julian I. Rood; Abraham L. Sonenshein; Bruno Dupuy

TxeR, a sigma factor that directs Clostridium difficile RNA polymerase to recognize the promoters of two major toxin genes, was shown to stimulate its own synthesis. Whether expressed in C. difficile, Clostridium perfringens, or Escherichia coli, TxeR stimulated transcription of fusions of the txeR promoter region to reporter genes. As is the case for the tox genes, txeR expression was responsive to the cellular growth phase and the constituents of the medium. That is, the level of expression in broth culture was low during the exponential growth phase, but rapidly increased as cells approached the stationary phase. In the presence of excess glucose, expression from the txeR promoter was repressed. The results support a model for toxin gene expression in which synthesis of TxeR is induced by specific environmental signals. The increased level of TxeR then permits high-level expression of the toxin genes. The study of txeR gene regulation in C. difficile was made possible by introduction of a mobilizable, replicative plasmid via conjugation with E. coli.


Journal of Bacteriology | 2011

The Key Sigma Factor of Transition Phase, SigH, Controls Sporulation, Metabolism, and Virulence Factor Expression in Clostridium difficile

Laure Saujet; Marc Monot; Bruno Dupuy; Olga Soutourina; Isabelle Martin-Verstraete

Toxin synthesis in Clostridium difficile increases as cells enter into stationary phase. We first compared the expression profiles of strain 630E during exponential growth and at the onset of stationary phase and showed that genes involved in sporulation, cellular division, and motility, as well as carbon and amino acid metabolism, were differentially expressed under these conditions. We inactivated the sigH gene, which encodes an alternative sigma factor involved in the transition to post-exponential phase in Bacillus subtilis. Then, we compared the expression profiles of strain 630E and the sigH mutant after 10 h of growth. About 60% of the genes that were differentially expressed between exponential and stationary phases, including genes involved in motility, sporulation, and metabolism, were regulated by SigH, which thus appears to be a key regulator of the transition phase in C. difficile. SigH positively controls several genes required for sporulation. Accordingly, sigH inactivation results in an asporogeneous phenotype. The spo0A and CD2492 genes, encoding the master regulator of sporulation and one of its associated kinases, and the spoIIA operon were transcribed from a SigH-dependent promoter. The expression of tcdA and tcdB, encoding the toxins, and of tcdR, encoding the sigma factor required for toxin production, increased in a sigH mutant. Finally, SigH regulates the expression of genes encoding surface-associated proteins, such as the Cwp66 adhesin, the S-layer precursor, and the flagellum components. Among the 286 genes positively regulated by SigH, about 40 transcriptional units presenting a SigH consensus in their promoter regions are good candidates for direct SigH targets.


Molecular Microbiology | 2011

CcpA‐mediated repression of Clostridium difficile toxin gene expression

Ana Antunes; Isabelle Martin-Verstraete; Bruno Dupuy

The presence of glucose or other rapidly metabolizable carbon sources in the bacterial growth medium strongly represses Clostridium difficile toxin synthesis independently of strain origin. In Gram‐positive bacteria, carbon catabolite repression (CCR) is generally regarded as a regulatory mechanism that responds to carbohydrate availability. In the C. difficile genome all elements involved in CCR are present. To elucidate in vivo the role of CCR in C. difficile toxin synthesis, we used the ClosTron gene knockout system to construct mutants of strain JIR8094 that were unable to produce the major components of the CCR signal transduction pathway: the phosphotransferase system (PTS) proteins (Enzyme I and HPr), the HPr kinase/phosphorylase (HprK/P) and the catabolite control protein A, CcpA. Inactivation of the ptsI, ptsH and ccpA genes resulted in derepression of toxin gene expression in the presence of glucose, whereas repression of toxin production was still observed in the hprK mutant, indicating that uptake of glucose is required for repression but that phosphorylation of HPr by HprK is not. C. difficile CcpA was found to bind to the regulatory regions of the tcdA and tcdB genes but not through a consensus cre site motif. Moreover in vivo and in vitro results confirmed that HPr‐Ser45‐P does not stimulate CcpA‐dependent binding to DNA targets. However, fructose‐1,6‐biphosphate (FBP) alone did increase CcpA binding affinity in the absence of HPr‐Ser45‐P. These results showed that CcpA represses toxin expression in response to PTS sugar availability, thus linking carbon source utilization to virulence gene expression in C. difficile.

Collaboration


Dive into the Bruno Dupuy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge