Bruno Gepner
Aix-Marseille University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bruno Gepner.
Neuroscience & Biobehavioral Reviews | 2009
Bruno Gepner; François Féron
Disorders in verbal and emotional communication and imitation, social reciprocity and higher order cognition observed in individuals with autism spectrum disorders (ASD) are presented here as phenotypic expressions of temporo-spatial processing disorders (TSPDs). TSPDs include various degrees of disability in (i) processing multi-sensory dynamic stimuli online, (ii) associating them into meaningful and coherent patterns and (iii) producing real-time sensory-motor adjustments and motor outputs. In line with this theory, we found that slowing down the speed of facial and vocal events enhanced imitative, verbal and cognitive abilities in some ASD children, particularly those with low functioning autism. We then argue that TSPDs may result from Multi-system Brain Disconnectivity-Dissynchrony (MBD), defined as an increase or decrease in functional connectivity and neuronal synchronization within/between multiple neurofunctional territories and pathways. Recent functional magnetic resonance imaging (fMRI) and electrophysiological studies supporting MBD are outlined. Finally, we review the suspected underlying neurobiological mechanisms of MBD as evidenced in neuroimaging, genetic, environmental and epigenetic studies. Overall, our TSPD/MBD approach to ASD may open new promising avenues for a better understanding of neuro-physio-psychopathology of ASD and clinical rehabilitation of people affected by these syndromes.
Journal of Visualized Experiments | 2011
Stéphane D. Girard; Arnaud Deveze; Emmanuel Nivet; Bruno Gepner; François S. Roman; François Féron
The olfactory mucosa, located in the nasal cavity, is in charge of detecting odours. It is also the only nervous tissue that is exposed to the external environment and easily accessible in every living individual. As a result, this tissue is unique for anyone aiming to identify molecular anomalies in the pathological brain or isolate adult stem cells for cell therapy. Molecular abnormalities in brain diseases are often studied using nervous tissue samples collected post-mortem. However, this material has numerous limitations. In contrast, the olfactory mucosa is readily accessible and can be biopsied safely without any loss of sense of smell1. Accordingly, the olfactory mucosa provides an open window in the adult human through which one can study developmental (e.g. autism, schizophrenia)2-4 or neurodegenerative (e.g. Parkinson, Alzheimer) diseases4,5. Olfactory mucosa can be used for either comparative molecular studies4,6 or in vitro experiments on neurogenesis3,7. The olfactory epithelium is also a nervous tissue that produces new neurons every day to replace those that are damaged by pollution, bacterial of viral infections. This permanent neurogenesis is sustained by progenitors but also stem cells residing within both compartments of the mucosa, namely the neuroepithelium and the underlying lamina propria8-10. We recently developed a method to purify the adult stem cells located in the lamina propria and, after having demonstrated that they are closely related to bone marrow mesenchymal stem cells (BM-MSC), we named them olfactory ecto-mesenchymal stem cells (OE-MSC)11. Interestingly, when compared to BM-MSCs, OE-MSCs display a high proliferation rate, an elevated clonogenicity and an inclination to differentiate into neural cells. We took advantage of these characteristics to perform studies dedicated to unveil new candidate genes in schizophrenia and Parkinsons disease4. We and others have also shown that OE-MSCs are promising candidates for cell therapy, after a spinal cord trauma12,13, a cochlear damage14 or in an animal models of Parkinsons disease15 or amnesia16. In this study, we present methods to biopsy olfactory mucosa in rats and humans. After collection, the lamina propria is enzymatically separated from the epithelium and stem cells are purified using an enzymatic or a non-enzymatic method. Purified olfactory stem cells can then be either grown in large numbers and banked in liquid nitrogen or induced to form spheres or differentiated into neural cells. These stem cells can also be used for comparative omics (genomic, transcriptomic, epigenomic, proteomic) studies.
Molecular Autism | 2016
Lam Son Nguyen; Marylin Lepleux; Mélanie Makhlouf; Christelle Martin; Julien Fregeac; Karine Siquier-Pernet; Anne Philippe; François Féron; Bruno Gepner; Claire Rougeulle; Yann Humeau; Laurence Colleaux
BackgroundAutism spectrum disorders (ASD) are a group of neurodevelopmental disorders caused by the interaction between genetic vulnerability and environmental factors. MicroRNAs (miRNAs) are key posttranscriptional regulators involved in multiple aspects of brain development and function. Previous studies have investigated miRNAs expression in ASD using non-neural cells like lymphoblastoid cell lines (LCL) or postmortem tissues. However, the relevance of LCLs is questionable in the context of a neurodevelopmental disorder, and the impact of the cause of death and/or post-death handling of tissue likely contributes to the variations observed between studies on brain samples.MethodsmiRNA profiling using TLDA high-throughput real-time qPCR was performed on miRNAs extracted from olfactory mucosal stem cells (OMSCs) biopsied from eight patients and six controls. This tissue is considered as a closer tissue to neural stem cells that could be sampled in living patients and was never investigated for such a purpose before. Real-time PCR was used to validate a set of differentially expressed miRNAs, and bioinformatics analysis determined common pathways and gene targets. Luciferase assays and real-time PCR analysis were used to evaluate the effect of miRNAs misregulation on the expression and translation of several autism-related transcripts. Viral vector-mediated expression was used to evaluate the impact of miRNAs deregulation on neuronal or glial cells functions.ResultsWe identified a signature of four miRNAs (miR-146a, miR-221, miR-654-5p, and miR-656) commonly deregulated in ASD. This signature is conserved in primary skin fibroblasts and may allow discriminating between ASD and intellectual disability samples. Putative target genes of the differentially expressed miRNAs were enriched for pathways previously associated to ASD, and altered levels of neuronal transcripts targeted by miR-146a, miR-221, and miR-656 were observed in patients’ cells. In the mouse brain, miR-146a, and miR-221 display strong neuronal expression in regions important for high cognitive functions, and we demonstrated that reproducing abnormal miR-146a expression in mouse primary cell cultures leads to impaired neuronal dendritic arborization and increased astrocyte glutamate uptake capacities.ConclusionsWhile independent replication experiments are needed to clarify whether these four miRNAS could serve as early biomarkers of ASD, these findings may have important diagnostic implications. They also provide mechanistic connection between miRNA dysregulation and ASD pathophysiology and may open up new opportunities for therapeutic.
Molecular Psychiatry | 2016
François Féron; Bruno Gepner; Emmanuelle Lacassagne; Delphine Stephan; B Mesnage; M. P Blanchard; N. Boulanger; Carole Tardif; Arnaud Deveze; S Rousseau; Keiichiro Suzuki; J Izpisua Belmonte; Michel Khrestchatisky; Emmanuel Nivet; M. Erard-Garcia
With an onset under the age of 3 years, autism spectrum disorders (ASDs) are now understood as diseases arising from pre- and/or early postnatal brain developmental anomalies and/or early brain insults. To unveil the molecular mechanisms taking place during the misshaping of the developing brain, we chose to study cells that are representative of the very early stages of ontogenesis, namely stem cells. Here we report on MOlybdenum COfactor Sulfurase (MOCOS), an enzyme involved in purine metabolism, as a newly identified player in ASD. We found in adult nasal olfactory stem cells of 11 adults with ASD that MOCOS is downregulated in most of them when compared with 11 age- and gender-matched control adults without any neuropsychiatric disorders. Genetic approaches using in vivo and in vitro engineered models converge to indicate that altered expression of MOCOS results in neurotransmission and synaptic defects. Furthermore, we found that MOCOS misexpression induces increased oxidative-stress sensitivity. Our results demonstrate that altered MOCOS expression is likely to have an impact on neurodevelopment and neurotransmission, and may explain comorbid conditions, including gastrointestinal disorders. We anticipate our discovery to be a fresh starting point for the study on the roles of MOCOS in brain development and its functional implications in ASD clinical symptoms. Moreover, our study suggests the possible development of new diagnostic tests based on MOCOS expression, and paves the way for drug screening targeting MOCOS and/or the purine metabolism to ultimately develop novel treatments in ASD.
Encephale-revue De Psychiatrie Clinique Biologique Et Therapeutique | 2017
Aurore Charrier; Carole Tardif; Bruno Gepner
OBJECTIVEnFace and gaze avoidance are among the most characteristic and salient symptoms of autism spectrum disorders (ASD). Studies using eye tracking highlighted early and lifelong ASD-specific abnormalities in attention to face such as decreased attention to internal facial features. These specificities could be partly explained by disorders in the perception and integration of rapid and complex information such as that conveyed by facial movements and more broadly by biological and physical environment. Therefore, we wish to test whether slowing down facial dynamics may improve the way children with ASD attend to a face.nnnMETHODSnWe used an eye tracking method to examine gaze patterns of children with ASD aged 3 to 8 (n=23) and TD controls (n=29) while viewing the face of a speaker telling a story. The story was divided into 6 sequences that were randomly displayed at 3 different speeds, i.e. a real-time speed (RT), a slow speed (S70=70% of RT speed), a very slow speed (S50=50% of RT speed). S70 and S50 were displayed thanks to software called Logiral™, aimed at slowing down visual and auditory stimuli simultaneously and without tone distortion. The visual scene was divided into four regions of interest (ROI): eyes region; mouth region; whole face region; outside the face region. The total time, number and mean duration of visual fixations on the whole visual scene and the four ROI were measured between and within the two groups.nnnRESULTSnCompared to TD children, children with ASD spent significantly less time attending to the visual scenes and, when they looked at the scene, they spent less time scanning the speakers face in general and her mouth in particular, and more time looking outside facial area. Within the ASD group mean duration of fixation increased on the whole scene and particularly on the mouth area, in R50 compared to RT. Children with mild autism spent more time looking at the face than the two other groups of ASD children, and spent more time attending to the face and mouth as well as longer mean duration of visual fixation on mouth and eyes, at slow speeds (S50 and/or S70) than at RT one.nnnCONCLUSIONSnSlowing down facial dynamics enhances looking time on face, and particularly on mouth and/or eyes, in a group of 23 children with ASD and particularly in a small subgroup with mild autism. Given the crucial role of reading the eyes for emotional processing and that of lip-reading for language processing, our present result and other converging ones could pave the way for novel socio-emotional and verbal rehabilitation methods for autistic population. Further studies should investigate whether increased attention to face and particularly eyes and mouth is correlated to emotional/social and/or verbal/language improvements.
Pediatrics | 2017
Carole Tardif; Laura Latzko; Thomas Arciszewski; Bruno Gepner
This case report describes the first demonstration of enhanced verbal cognition due to reducing the speed of audiovisual information in 2 children with ASDs. According to the temporal theory of autism spectrum disorders (ASDs), audiovisual changes in environment, particularly those linked to facial and verbal language, are often too fast to be faced, perceived, and/or interpreted online by many children with ASD, which could help explain their facial, verbal, and/or socioemotional interaction impairments. Our goal here was to test for the first time the impact of slowed-down audiovisual information on verbal cognition and behavior in 2 boys with ASD and verbal delay. Using 15 experimental sessions during 4 months, both boys were presented with various stimuli (eg, pictures, words, sentences, cartoons) and were then asked questions or given instructions regarding stimuli. The audiovisual stimuli and instructions/questions were presented on a computers screen and were always displayed twice: at real-time speed (RTS) and at slowed-down speed (SDS) using the software Logiral. We scored the boys’ verbal cognition performance (ie, ability to understand questions/instructions and answer them verbally/nonverbally) and their behavioral reactions (ie, attention, verbal/nonverbal communication, social reciprocity), and analyzed the effects of speed and order of the stimuli presentation on these factors. According to the results, both participants exhibited significant improvements in verbal cognition performance with SDS presentation compared with RTS presentation, and they scored better with RTS presentation when having SDS presentation before rather than after RTS presentation. Behavioral reactions were also improved in SDS conditions compared with RTS conditions. This initial evidence of a positive impact of slowed-down audiovisual information on verbal cognition should be tested in a large cohort of children with ASD and associated speech/language impairments.
Devenir | 2006
Bruno Gepner
Interactions | 2008
Bruno Gepner
Devenir | 2006
Bruno Gepner
Research in Autism Spectrum Disorders | 2018
Anaïs Godde; Raphaele Tsao; Bruno Gepner; Carole Tardif