Bruno J. Neves
Universidade Federal de Goiás
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bruno J. Neves.
Molecules | 2015
Bruno J. Neves; Carolina H. Andrade; Pedro Cravo
Schistosomiasis is a neglected parasitic tropical disease that claims around 200,000 human lives every year. Praziquantel (PZQ), the only drug recommended by the World Health Organization for the treatment and control of human schistosomiasis, is now facing the threat of drug resistance, indicating the urgent need for new effective compounds to treat this disease. Therefore, globally, there is renewed interest in natural products (NPs) as a starting point for drug discovery and development for schistosomiasis. Recent advances in genomics, proteomics, bioinformatics, and cheminformatics have brought about unprecedented opportunities for the rapid and more cost-effective discovery of new bioactive compounds against neglected tropical diseases. This review highlights the main contributions that NP drug discovery and development have made in the treatment of schistosomiasis and it discusses how integration with virtual screening (VS) strategies may contribute to accelerating the development of new schistosomidal leads, especially through the identification of unexplored, biologically active chemical scaffolds and structural optimization of NPs with previously established activity.
Molecules | 2017
Marcelo N. Gomes; Eugene N. Muratov; Maristela Pereira; Josana C. Peixoto; Lucimar P. Rosseto; Pedro Cravo; Carolina H. Andrade; Bruno J. Neves
Medicinal chemists continue to be fascinated by chalcone derivatives because of their simple chemistry, ease of hydrogen atom manipulation, straightforward synthesis, and a variety of promising biological activities. However, chalcones have still not garnered deserved attention, especially considering their high potential as chemical sources for designing and developing new effective drugs. In this review, we summarize current methodological developments towards the design and synthesis of new chalcone derivatives and state-of-the-art medicinal chemistry strategies (bioisosterism, molecular hybridization, and pro-drug design). We also highlight the applicability of computer-assisted drug design approaches to chalcones and address how this may contribute to optimizing research outputs and lead to more successful and cost-effective drug discovery endeavors. Lastly, we present successful examples of the use of chalcones and suggest possible solutions to existing limitations.
F1000Research | 2016
Sean Ekins; John Liebler; Bruno J. Neves; Warren G. Lewis; Megan Coffee; Rachelle Bienstock; Christopher Southan; Carolina H. Andrade
The Zika virus (ZIKV) is a flavivirus of the family Flaviviridae, which is similar to dengue virus, yellow fever and West Nile virus. Recent outbreaks in South America, Latin America, the Caribbean and in particular Brazil have led to concern for the spread of the disease and potential to cause Guillain-Barré syndrome and microcephaly. Although ZIKV has been known of for over 60 years there is very little in the way of knowledge of the virus with few publications and no crystal structures. No antivirals have been tested against it either in vitro or in vivo. ZIKV therefore epitomizes a neglected disease. Several suggested steps have been proposed which could be taken to initiate ZIKV antiviral drug discovery using both high throughput screens as well as structure-based design based on homology models for the key proteins. We now describe preliminary homology models created for NS5, FtsJ, NS4B, NS4A, HELICc, DEXDc, peptidase S7, NS2B, NS2A, NS1, E stem, glycoprotein M, propeptide, capsid and glycoprotein E using SWISS-MODEL. Eleven out of 15 models pass our model quality criteria for their further use. While a ZIKV glycoprotein E homology model was initially described in the immature conformation as a trimer, we now describe the mature dimer conformer which allowed the construction of an illustration of the complete virion. By comparing illustrations of ZIKV based on this new homology model and the dengue virus crystal structure we propose potential differences that could be exploited for antiviral and vaccine design. The prediction of sites for glycosylation on this protein may also be useful in this regard. While we await a cryo-EM structure of ZIKV and eventual crystal structures of the individual proteins, these homology models provide the community with a starting point for structure-based design of drugs and vaccines as well as a for computational virtual screening.
Journal of Chemical Information and Modeling | 2016
Cleber C. Melo-Filho; Rafael F. Dantas; Rodolpho C. Braga; Bruno J. Neves; Mario Roberto Senger; Walter C. G. Valente; João M. Rezende-Neto; Willian Távora Chaves; Eugene N. Muratov; Ross A. Paveley; Nicholas Furnham; Lee Kamentsky; Anne E. Carpenter; Floriano P. Silva-Junior; Carolina H. Andrade
Schistosomiasis is a neglected tropical disease that affects millions of people worldwide. Thioredoxin glutathione reductase of Schistosoma mansoni (SmTGR) is a validated drug target that plays a crucial role in the redox homeostasis of the parasite. We report the discovery of new chemical scaffolds against S. mansoni using a combi-QSAR approach followed by virtual screening of a commercial database and confirmation of top ranking compounds by in vitro experimental evaluation with automated imaging of schistosomula and adult worms. We constructed 2D and 3D quantitative structure-activity relationship (QSAR) models using a series of oxadiazoles-2-oxides reported in the literature as SmTGR inhibitors and combined the best models in a consensus QSAR model. This model was used for a virtual screening of Hit2Lead set of ChemBridge database and allowed the identification of ten new potential SmTGR inhibitors. Further experimental testing on both shistosomula and adult worms showed that 4-nitro-3,5-bis(1-nitro-1H-pyrazol-4-yl)-1H-pyrazole (LabMol-17) and 3-nitro-4-{[(4-nitro-1,2,5-oxadiazol-3-yl)oxy]methyl}-1,2,5-oxadiazole (LabMol-19), two compounds representing new chemical scaffolds, have high activity in both systems. These compounds will be the subjects for additional testing and, if necessary, modification to serve as new schistosomicidal agents.
PLOS Neglected Tropical Diseases | 2015
Bruno J. Neves; Rodolpho C. Braga; José Clecildo Barreto Bezerra; Pedro Cravo; Carolina H. Andrade
Morbidity and mortality caused by schistosomiasis are serious public health problems in developing countries. Because praziquantel is the only drug in therapeutic use, the risk of drug resistance is a concern. In the search for new schistosomicidal drugs, we performed a target-based chemogenomics screen of a dataset of 2,114 proteins to identify drugs that are approved for clinical use in humans that may be active against multiple life stages of Schistosoma mansoni. Each of these proteins was treated as a potential drug target, and its amino acid sequence was used to interrogate three databases: Therapeutic Target Database (TTD), DrugBank and STITCH. Predicted drug-target interactions were refined using a combination of approaches, including pairwise alignment, conservation state of functional regions and chemical space analysis. To validate our strategy, several drugs previously shown to be active against Schistosoma species were correctly predicted, such as clonazepam, auranofin, nifedipine, and artesunate. We were also able to identify 115 drugs that have not yet been experimentally tested against schistosomes and that require further assessment. Some examples are aprindine, gentamicin, clotrimazole, tetrabenazine, griseofulvin, and cinnarizine. In conclusion, we have developed a systematic and focused computer-aided approach to propose approved drugs that may warrant testing and/or serve as lead compounds for the design of new drugs against schistosomes.
Journal of Medicinal Chemistry | 2016
Bruno J. Neves; Rafael F. Dantas; Mario Roberto Senger; Cleber C. Melo-Filho; Walter C. G. Valente; Ana Claudia de Almeida; João M. Rezende-Neto; Elid F. C. Lima; Ross A. Paveley; Nicholas Furnham; Eugene N. Muratov; Lee Kamentsky; Anne E. Carpenter; Rodolpho C. Braga; Floriano P. Silva-Junior; Carolina H. Andrade
Schistosomiasis is a debilitating neglected tropical disease, caused by flatworms of Schistosoma genus. The treatment relies on a single drug, praziquantel (PZQ), making the discovery of new compounds extremely urgent. In this work, we integrated QSAR-based virtual screening (VS) of Schistosoma mansoni thioredoxin glutathione reductase (SmTGR) inhibitors and high content screening (HCS) aiming to discover new antischistosomal agents. Initially, binary QSAR models for inhibition of SmTGR were developed and validated using the Organization for Economic Co-operation and Development (OECD) guidance. Using these models, we prioritized 29 compounds for further testing in two HCS platforms based on image analysis of assay plates. Among them, 2-[2-(3-methyl-4-nitro-5-isoxazolyl)vinyl]pyridine and 2-(benzylsulfonyl)-1,3-benzothiazole, two compounds representing new chemical scaffolds have activity against schistosomula and adult worms at low micromolar concentrations and therefore represent promising antischistosomal hits for further hit-to-lead optimization.
Bioorganic & Medicinal Chemistry Letters | 2013
Bruno J. Neves; Renata Vieira Bueno; Rodolpho C. Braga; Carolina H. Andrade
We here report the discovery of novel Plasmodium falciparum enoyl-ACP reductase (PfENR) inhibitors as new antimalarial hits through ligand- and structure-based drug design approaches. We performed 2D and 3D QSAR studies on a set of rhodanine analogues using hologram QSAR (HQSAR), comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) techniques. Statistical and satisfactory results were obtained for the best HQSAR (r(2) of 0.968 and qLOO(2) of 0.751), CoMFA (r(2) of 0.955 and qLOO(2) of 0.806) and CoMSIA (r(2) of 0.965 and qLOO(2) of 0.659) models. The information gathered from the QSAR models guided us to design new PfENR inhibitors. Three new hits were predicted with potency in the submicromolar range and presented drug-like properties.
Journal of Natural Products | 2016
Ligia F. Martins; Juliana T. Mesquita; Erika G. Pinto; Thais A. Costa-Silva; Samanta Etel Treiger Borborema; Andres J. Galisteo Junior; Bruno J. Neves; Carolina H. Andrade; Zainab Al Shuhaib; Elliot L. Bennett; Gregory P. Black; Philip M. Harper; Daniel M. Evans; Hisham S. Fituri; John P. Leyland; Claire Martin; Terence D. Roberts; Andrew J. Thornhill; Stephen A. Vale; Andrew Howard-Jones; Dafydd A. Thomas; Harri Lloyd Williams; Larry E. Overman; Roberto G. S. Berlinck; Patrick J. Murphy; Andre G. Tempone
Synthetic analogues of marine sponge guanidine alkaloids showed in vitro antiparasitic activity against Leishmania (L.) infantum and Trypanosoma cruzi. Guanidines 10 and 11 presented the highest selectivity index when tested against Leishmania. The antiparasitic activity of 10 and 11 was investigated in host cells and in parasites. Both compounds induced depolarization of mitochondrial membrane potential, upregulation of reactive oxygen species levels, and increased plasma membrane permeability in Leishmania parasites. Immunomodulatory assays suggested an NO-independent effect of guanidines 10 and 11 on macrophages. The same compounds also promoted anti-inflammatory activity in L. (L.) infantum-infected macrophages cocultived with splenocytes, reducing the production of cytokines MCP-1 and IFN-γ. Guanidines 10 and 11 affect the bioenergetic metabolism of Leishmania, with selective elimination of parasites via a host-independent mechanism.
Journal of Molecular Modeling | 2013
Renata Vieira Bueno; Ney Ramos Toledo; Bruno J. Neves; Rodolpho C. Braga; Carolina H. Andrade
Tuberculosis (TB) still remains one of the most deadly infectious diseases. Mycobacterium tuberculosis thymidine monophosphate kinase (TMPKmt) has emerged as an attractive molecular target for the design of a novel class of anti-TB agents since blocking it will affect the pathways involved in DNA replication. Aiming at shedding some light on structural and chemical features that are important for the affinity of thymidine derivatives to TMPKmt, we have employed a special fragment-based method to develop robust quantitative structure-activity relationship models for a large and chemically diverse series of thymidine-based analogues. Significant statistical parameters (r2 = 0.94, q2 = 0.76, r2pred = 0.89) were obtained, indicating the reliability of the hologram QSAR model in predicting the biological activity of untested compounds. The 2D model was then used to predict the potency of an external test set, and the predicted values obtained from the HQSAR model were in good agreement with the experimental results. We have accordingly designed novel TMPKmt inhibitors by utilizing the fragments proposed by HQSAR analysis and predicted with good activity in the developed models. The new designed compounds also presented drug-like characteristics based on Lipinski’s rule of 5. The generated molecular recognition patterns gathered from the HQSAR analysis combined with quantum mechanics/molecular mechanics (QM/MM) docking studies, provided important insights into the chemical and structural basis involved in the molecular recognition process of this series of thymidine analogues and should be useful for the design of new potent anti-TB agents.
Bioorganic & Medicinal Chemistry Letters | 2017
Marcelo N. Gomes; Laura M. Alcântara; Bruno J. Neves; Cleber C. Melo-Filho; Lucio H. Freitas-Junior; Carolina B. Moraes; Rui Ma; Scott G. Franzblau; Eugene N. Muratov; Carolina H. Andrade
Leishmaniasis are infectious diseases caused by parasites of genus Leishmania that affect affects 12 million people in 98 countries mainly in Africa, Asia, and Latin America. Effective treatments for this disease are urgently needed. In this study, we present a computer-aided approach to investigate a set of 32 recently synthesized chalcone and chalcone-like compounds to act as antileishmanial agents. As a result, nine most promising compounds and three potentially inactive compounds were experimentally evaluated against Leishmania infantum amastigotes and mammalian cells. Four compounds exhibited EC50 in the range of 6.2-10.98μM. In addition, two compounds, LabMol-65 and LabMol-73, exhibited cytotoxicity in macrophages >50μM that resulted in better selectivity compared to standard drug amphotericin B. These two compounds also demonstrated low cytotoxicity and high selectivity towards Vero cells. The results of target fishing followed by homology modeling and docking studies suggest that these chalcone compounds could act in Leishmania because of their interaction with cysteine proteases, such as procathepsin L. Finally, we have provided structural recommendations for designing new antileishmanial chalcones.