Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bruno Kopp is active.

Publication


Featured researches published by Bruno Kopp.


Journal of Cognitive Neuroscience | 2006

Fractionating the Neural Mechanisms of Cognitive Control

Bruno Kopp; Sandra Tabeling; Carsten Moschner; Karl Wessel

Modifications of the Wisconsin Card Sorting Test were established. In these new task variants, participants were asked to exert sequential control over attentional sets or over intentional sets (task domain factor). Attentional set shifting requires changing the priorities by which sensory stimuli are selected, whereas intentional set shifting requires changing the priorities by which motor responses are selected. Auditory stimuli that signaled to maintain or shift set were presented immediately before (precuing) or after (postcuing) the selection of cards (cue timing factor). Twenty-four healthy young individuals participated. Performance data (response times, error percentages) indicated that intentional tasks were easier to perform than attentional tasks. The electroencephalogram was recorded during task performance, and the N1, medial frontal negativity (MFN), P3a, and sustained potential (SP) components of the cue event-related brain potentials (ERPs) were analyzed. Irrespective of the task domain, shift precues led to increased N1 amplitudes compared to shift postcues. When intentional sets had to be shifted, the MFNs in the postcuing condition were more pronounced than in the precuing condition. On the other hand, shifts of attentional sets resulted in a more prominent P3a in response to postcues compared to precues. Irrespective of the task domain, the shift effect that was evident in SPs was more pronounced in precue ERPs compared to postcue ERPs. We conclude that ERPs provide valid measures to empirically constrain theories about the neural mechanisms of cognitive control. The domain hypothesis of the fractionation of the neural mechanisms of cognitive control is introduced.


Brain and Cognition | 2014

Age-related changes in neural recruitment for cognitive control.

Bruno Kopp; Florian Lange; Jürgen Howe; Karl Wessel

The dual mechanisms of control (DMC; Braver, Gray, & Burgess, 2007) framework postulates a distinction between proactive and reactive modes of cognitive control. Event-related brain potentials (ERPs) were used to examine age differences in the neural correlates of proactive and reactive control for task-switching. Whereas proactive control is associated with brain activity for anticipatory task preparation, reactive control is accompanied by reduced preparatory activity, but increased activation during task execution. Switching between tasks was based on feedback-based transition cueing which places particularly high demands on mechanisms for cognitive control. Older adults maintained good performance accuracy at the expense of slower response times. No age-related increase in behavioral switching costs was observed. The cue-locked ERP (P3a) data revealed an age-related decrease in neural activity related to the processing of switch cues. In the target-locked ERPs, there was an increased frontal focus of the P3b in older adults. These ERP data indicate an age-related neural under-recruitment for proactive cognitive control and an age-related neural over-recruitment for reactive cognitive control. They are consistent with the idea that older adults may not fully implement task settings before target onset, after which they need to catch up on the omitted preparatory task settings.


Frontiers in Human Neuroscience | 2013

Electrophysiological indicators of surprise and entropy in dynamic task-switching environments.

Bruno Kopp; Florian Lange

This event-related brain potential (ERP) study aimed at bridging two hitherto widely separated domains of cognitive neuroscience. Specifically, we combined the analysis of cognitive control in a cued task-switching paradigm with the fundamental question of how uncertainty is encoded in the brain. Two functional models of P3 amplitude variation in cued task-switching paradigms were put to an empirical test: (1) According to the P3b surprise hypothesis, parietal P3b waveforms are related to surprise over switch cues. (2) According to the P3a entropy hypothesis, frontal P3a waveforms are associated with entropy over switch outcomes. In order to examine these hypotheses, we measured the EEG while sixteen healthy young participants performed cued task-switching paradigms closely modeled to the Wisconsin Card Sorting Test (WCST). We applied a factorial design, with number of tasks (two vs. three viable tasks), cue explicitness (task cuing vs. transition cuing), and cue contingency (prospectively-signaled cuing vs. feedback-based cuing) as independent variables. The ERP results replicated the commonly reported P3b effect associated with task switches, and further showed that P3a amplitudes were related to the entropy of switch outcomes, thereby supporting both hypotheses. Based on these ERP data, we suggest that surprise over task switches, and entropy over switch outcomes, constitute dissociable functional correlates of P3b and P3a ERP components in task-switching paradigms, respectively. Finally, a theoretical integration of the findings is proposed within the framework of Sokolovs (1966) entropy model of the orienting response (OR).


NeuroImage | 2015

A computational analysis of the neural bases of Bayesian inference.

Antonio Kolossa; Bruno Kopp; Tim Fingscheidt

Empirical support for the Bayesian brain hypothesis, although of major theoretical importance for cognitive neuroscience, is surprisingly scarce. This hypothesis posits simply that neural activities code and compute Bayesian probabilities. Here, we introduce an urn-ball paradigm to relate event-related potentials (ERPs) such as the P300 wave to Bayesian inference. Bayesian model comparison is conducted to compare various models in terms of their ability to explain trial-by-trial variation in ERP responses at different points in time and over different regions of the scalp. Specifically, we are interested in dissociating specific ERP responses in terms of Bayesian updating and predictive surprise. Bayesian updating refers to changes in probability distributions given new observations, while predictive surprise equals the surprise about observations under current probability distributions. Components of the late positive complex (P3a, P3b, Slow Wave) provide dissociable measures of Bayesian updating and predictive surprise. Specifically, the updating of beliefs about hidden states yields the best fit for the anteriorly distributed P3a, whereas the updating of predictions of observations accounts best for the posteriorly distributed Slow Wave. In addition, parietally distributed P3b responses are best fit by predictive surprise. These results indicate that the three components of the late positive complex reflect distinct neural computations. As such they are consistent with the Bayesian brain hypothesis, but these neural computations seem to be subject to nonlinear probability weighting. We integrate these findings with the free-energy principle that instantiates the Bayesian brain hypothesis.


BMC Neurology | 2013

Performance on the Frontal Assessment Battery is sensitive to frontal lobe damage in stroke patients

Bruno Kopp; Nina Rösser; Sandra Tabeling; Hans Jörg Stürenburg; Bianca de Haan; Hans-Otto Karnath; Karl Wessel

BackgroundThe Frontal Assessment Battery (FAB) is a brief battery of six neuropsychological tasks designed to assess frontal lobe function at bedside [Neurology 55:1621-1626, 2000]. The six FAB tasks explore cognitive and behavioral domains that are thought to be under the control of the frontal lobes, most notably conceptualization and abstract reasoning, lexical verbal fluency and mental flexibility, motor programming and executive control of action, self-regulation and resistance to interference, inhibitory control, and environmental autonomy.MethodsWe examined the sensitivity of performance on the FAB to frontal lobe damage in right-hemisphere-damaged first-ever stroke patients based on voxel-based lesion-behavior mapping.ResultsVoxel-based lesion-behavior mapping of FAB performance revealed that the integrity of the right anterior insula (BA13) is crucial for the FAB global composite score, for the FAB conceptualization score, as well as for the FAB inhibitory control score. Furthermore, the FAB conceptualization and mental flexibility scores were sensitive to damage of the right middle frontal gyrus (MFG; BA9). Finally, the FAB inhibitory control score was sensitive to damage of the right inferior frontal gyrus (IFG; BA44/45).ConclusionsThese findings indicate that several FAB scores (including composite and item scores) provide valid measures of right hemispheric lateral frontal lobe dysfunction, specifically of focal lesions near the anterior insula, in the MFG and in the IFG.


Frontiers in Human Neuroscience | 2013

A Model-Based Approach to Trial-By-Trial P300 Amplitude Fluctuations

Antonio Kolossa; Tim Fingscheidt; Karl Wessel; Bruno Kopp

It has long been recognized that the amplitude of the P300 component of event-related brain potentials is sensitive to the degree to which eliciting stimuli are surprising to the observers (Donchin, 1981). While Squires et al. (1976) showed and modeled dependencies of P300 amplitudes from observed stimuli on various time scales, Mars et al. (2008) proposed a computational model keeping track of stimulus probabilities on a long-term time scale. We suggest here a computational model which integrates prior information with short-term, long-term, and alternation-based experiential influences on P300 amplitude fluctuations. To evaluate the new model, we measured trial-by-trial P300 amplitude fluctuations in a simple two-choice response time task, and tested the computational models of trial-by-trial P300 amplitudes using Bayesian model evaluation. The results reveal that the new digital filtering (DIF) model provides a superior account of the trial-by-trial P300 amplitudes when compared to both Squires et al.’s (1976) model, and Mars et al.’s (2008) model. We show that the P300-generating system can be described as two parallel first-order infinite impulse response (IIR) low-pass filters and an additional fourth-order finite impulse response (FIR) high-pass filter. Implications of the acquired data are discussed with regard to the neurobiological distinction between short-term, long-term, and working memory as well as from the point of view of predictive coding models and Bayesian learning theories of cortical function.


Neuroscience & Biobehavioral Reviews | 2016

Event-Related Potentials and Cognition in Parkinson's Disease: An Integrative Review.

Caroline Seer; Florian Lange; Dejan Georgiev; Marjan Jahanshahi; Bruno Kopp

Cognitive impairment is a common non-motor symptom of Parkinsons disease (PD), but the nature of cognitive changes varies considerably between individuals. According to the dual-syndrome hypothesis, one cluster of patients is characterized by deficits in executive function that may be related to fronto-striatal dysfunction. Other patients primarily show non-frontal cognitive impairments that progress rapidly to PD dementia (PDD). We provide a comprehensive review of event-related potential (ERP) studies to identify ERP measures substantiating the heterogeneity of cognitive impairment in PD. Our review revealed evidence for P3b and mismatch-negativity alterations in PDD, but not in non-demented PD, indicating that alterations of these ERPs constitute electrophysiological markers for PDD. In contrast, ERP correlates of executive functions, such as NoGo-P3, N2, and error(-related) negativity (Ne/ERN), appear to be attenuated in non-demented PD patients in a dopamine-dependent manner. Hence, ERP measures confirm and yield distinct electrophysiological markers for the heterogeneity of cognitive impairment in PD. We discuss limitations and open questions of the ERP approach and provide directions and predictions for future ERP research.


BMC Neuroscience | 2007

Temporal dynamics of selective attention and conflict resolution during cross-dimensional go-nogo decisions

Bruno Kopp; Sandra Tabeling; Carsten Moschner; Karl Wessel

BackgroundDecision-making is a fundamental capacity which is crucial to many higher-order psychological functions. We recorded event-related potentials (ERPs) during a visual target-identification task that required go-nogo choices. Targets were identified on the basis of cross-dimensional conjunctions of particular colors and forms. Color discriminability was manipulated in three conditions to determine the effects of color distinctiveness on component processes of decision-making.ResultsTarget identification was accompanied by the emergence of prefrontal P2a and P3b. Selection negativity (SN) revealed that target-compatible features captured attention more than target-incompatible features, suggesting that intra-dimensional attentional capture was goal-contingent. No changes of cross-dimensional selection priorities were measurable when color discriminability was altered. Peak latencies of the color-related SN provided a chronometric measure of the duration of attention-related neural processing. ERPs recorded over the frontocentral scalp (N2c, P3a) revealed that color-overlap distractors, more than form-overlap distractors, required additional late selection. The need for additional response selection induced by color-overlap distractors was severely reduced when color discriminability decreased.ConclusionWe propose a simple model of cross-dimensional perceptual decision-making. The temporal synchrony of separate color-related and form-related choices determines whether or not distractor processing includes post-perceptual stages. ERP measures contribute to a comprehensive explanation of the temporal dynamics of component processes of perceptual decision-making.


Scientific Reports | 2015

Cognitive caching promotes flexibility in task switching: evidence from event-related potentials.

Florian Lange; Caroline Seer; Dorothea Müller; Bruno Kopp

Time-consuming processes of task-set reconfiguration have been shown to contribute to the costs of switching between cognitive tasks. We describe and probe a novel mechanism serving to reduce the costs of task-set reconfiguration. We propose that when individuals are uncertain about the currently valid task, one task set is activated for execution while other task sets are maintained at a pre-active state in cognitive cache. We tested this idea by assessing an event-related potential (ERP) index of task-set reconfiguration in a three-rule task-switching paradigm involving varying degrees of task uncertainty. In high-uncertainty conditions, two viable tasks were equally likely to be correct whereas in low-uncertainty conditions, one task was more likely than the other. ERP and performance measures indicated substantial costs of task-set reconfiguration when participants were required to switch away from a task that had been likely to be correct. In contrast, task-set-reconfiguration costs were markedly reduced when the previous task set was chosen under high task uncertainty. These results suggest that cognitive caching of alternative task sets adds to human cognitive flexibility under high task uncertainty.


Biological Psychology | 2015

Dual routes to cortical orienting responses: novelty detection and uncertainty reduction.

Florian Lange; Caroline Seer; Mareike Finke; Reinhard Dengler; Bruno Kopp

Sokolov distinguished between reactive and proactive variants of the orienting response (OR). The Novelty P3 is considered as an electrophysiological signature of the reactive OR. Recent work suggests that the proactive OR is reflected in frontally distributed P3 activity elicited by uncertainty-reducing stimuli in task-switching paradigms. Here, we directly compare the electrophysiological signatures of reactive and proactive ORs. Participants completed a novelty oddball task and a task-switching procedure while the electroencephalogram was measured. Novel and uncertainty-reducing stimuli evoked prominent fronto-centrally distributed Novelty P3 and Uncertainty P3 waves, respectively. We found a substantial negative correlation between Novelty P3 and Uncertainty P3 across participants, suggesting that reactive and proactive ORs converge on a common neural pathway, but also that distinguishable routes to orienting exist. Moreover, response accuracy was associated with reduced Novelty-P3 and enhanced Uncertainty-P3 amplitudes. The relation between Novelty P3 and Uncertainty P3 might serve as an index of individual differences in distractibility and cognitive control.

Collaboration


Dive into the Bruno Kopp's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antonio Kolossa

Braunschweig University of Technology

View shared research outputs
Top Co-Authors

Avatar

Sandra Tabeling

Braunschweig University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tim Fingscheidt

Braunschweig University of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge