Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bruno L. Giordano is active.

Publication


Featured researches published by Bruno L. Giordano.


Journal of the Acoustical Society of America | 2011

The Timbre Toolbox: Extracting audio descriptors from musical signals

Geoffroy Peeters; Bruno L. Giordano; Patrick Susini; Nicolas Misdariis; Stephen McAdams

The analysis of musical signals to extract audio descriptors that can potentially characterize their timbre has been disparate and often too focused on a particular small set of sounds. The Timbre Toolbox provides a comprehensive set of descriptors that can be useful in perceptual research, as well as in music information retrieval and machine-learning approaches to content-based retrieval in large sound databases. Sound events are first analyzed in terms of various input representations (short-term Fourier transform, harmonic sinusoidal components, an auditory model based on the equivalent rectangular bandwidth concept, the energy envelope). A large number of audio descriptors are then derived from each of these representations to capture temporal, spectral, spectrotemporal, and energetic properties of the sound events. Some descriptors are global, providing a single value for the whole sound event, whereas others are time-varying. Robust descriptive statistics are used to characterize the time-varying descriptors. To examine the information redundancy across audio descriptors, correlational analysis followed by hierarchical clustering is performed. This analysis suggests ten classes of relatively independent audio descriptors, showing that the Timbre Toolbox is a multidimensional instrument for the measurement of the acoustical structure of complex sound signals.


Journal of the Acoustical Society of America | 2004

The psychomechanics of simulated sound sources: Material properties of impacted bars

Stephen McAdams; Vincent Roussarie; Antoine Chaigne; Bruno L. Giordano

Sounds convey information about the materials composing an object. Stimuli were synthesized using a computer model of impacted plates that varied their material properties: viscoelastic and thermoelastic damping and wave velocity (related to elasticity and mass density). The range of damping properties represented a continuum between materials with predominant viscoelastic and thermoelastic damping (glass and aluminum, respectively). The perceptual structure of the sounds was inferred from multidimensional scaling of dissimilarity judgments and from their categorization as glass or aluminum. Dissimilarity ratings revealed dimensions that were closely related to mechanical properties: a wave-velocity-related dimension associated with pitch and a damping-related dimension associated with timbre and duration. When asked to categorize sounds, however, listeners ignored the cues related to wave velocity and focused on cues related to damping. In both dissimilarity-rating and identification experiments, the results were independent of the material of the mallet striking the plate (rubber or wood). Listeners thus appear to select acoustical information that is reliable for a given perceptual task. Because the frequency changes responsible for detecting changes in wave velocity can also be due to changes in geometry, they are not as reliable for material identification as are damping cues.


International Journal of Human-computer Studies \/ International Journal of Man-machine Studies | 2009

Sound design and perception in walking interactions

Yon Visell; Federico Fontana; Bruno L. Giordano; Rolf Nordahl; Stefania Serafin; Roberto Bresin

This paper reviews the state of the art in the display and perception of walking generated sounds and tactile vibrations, and their current and potential future uses in interactive systems. As non-visual information sources that are closely linked to human activities in diverse environments, such signals are capable of communicating about the spaces we traverse and activities we encounter in familiar and intuitive ways. However, in order for them to be effectively employed in human-computer interfaces, significant knowledge is required in areas including the perception of acoustic signatures of walking, and the design, engineering, and evaluation of interfaces that utilize them. Much of this expertise has accumulated in recent years, although many questions remain to be explored. We highlight past work and current research directions in this multidisciplinary area of investigation, and point to potential future trends.


Brain and Cognition | 2010

Hearing living symbols and nonliving icons: category specificities in the cognitive processing of environmental sounds.

Bruno L. Giordano; John McDonnell; Stephen McAdams

The neurocognitive processing of environmental sounds and linguistic stimuli shares common semantic resources and can lead to the activation of motor programs for the generation of the passively heard sound or speech. We investigated the extent to which the cognition of environmental sounds, like that of language, relies on symbolic mental representations independent of the acoustic input. In a hierarchical sorting task, we found that evaluation of nonliving sounds is consistently biased toward a focus on acoustical information. However, the evaluation of living sounds focuses spontaneously on sound-independent semantic information, but can rely on acoustical information after exposure to a context consisting of nonliving sounds. We interpret these results as support for a robust iconic processing strategy for nonliving sounds and a flexible symbolic processing strategy for living sounds.


Journal of Experimental Psychology: Human Perception and Performance | 2010

Integration of Acoustical Information in the Perception of Impacted Sound Sources: The Role of Information Accuracy and Exploitability

Bruno L. Giordano; Davide Rocchesso; Stephen McAdams

Sound sources are perceived by integrating information from multiple acoustical features. The factors influencing the integration of information are largely unknown. We measured how the perceptual weighting of different features varies with the accuracy of information and with a listeners ability to exploit it. Participants judged the hardness of two objects whose interaction generates an impact sound: a hammer and a sounding object. In a first discrimination experiment, trained listeners focused on the most accurate information, although with greater difficulty when perceiving the hammer. We inferred a limited exploitability for the most accurate hammer-hardness information. In a second rating experiment, listeners focused on the most accurate information only when estimating sounding-object hardness. In a third rating experiment, we synthesized sounds by independently manipulating source properties that covaried in Experiments 1 and 2: sounding-object hardness and impact properties. Sounding-object hardness perception relied on the most accurate acoustical information, whereas impact-properties influenced more strongly hammer hardness perception. Overall, perceptual weight increased with the accuracy of acoustical information, although information that was not easily exploited was perceptually secondary, even if accurate.


Journal of the Acoustical Society of America | 2012

Identification of walked-upon materials in auditory, kinesthetic, haptic, and audio-haptic conditions.

Bruno L. Giordano; Yon Visell; Hsin-Yun Yao; Vincent Hayward; Jeremy R. Cooperstock; Stephen McAdams

Locomotion generates multisensory information about walked-upon objects. How perceptual systems use such information to get to know the environment remains unexplored. The ability to identify solid (e.g., marble) and aggregate (e.g., gravel) walked-upon materials was investigated in auditory, haptic or audio-haptic conditions, and in a kinesthetic condition where tactile information was perturbed with a vibromechanical noise. Overall, identification performance was better than chance in all experimental conditions and for both solids and the better identified aggregates. Despite large mechanical differences between the response of solids and aggregates to locomotion, for both material categories discrimination was at its worst in the auditory and kinesthetic conditions and at its best in the haptic and audio-haptic conditions. An analysis of the dominance of sensory information in the audio-haptic context supported a focus on the most accurate modality, haptics, but only for the identification of solid materials. When identifying aggregates, response biases appeared to produce a focus on the least accurate modality--kinesthesia. When walking on loose materials such as gravel, individuals do not perceive surfaces by focusing on the most accurate modality, but by focusing on the modality that would most promptly signal postural instabilities.


PLOS ONE | 2010

When Ears Drive Hands: The Influence of Contact Sound on Reaching to Grasp

Umberto Castiello; Bruno L. Giordano; Chiara Begliomini; Caterina Ansuini; Massimo Grassi

Background Most research on the roles of auditory information and its interaction with vision has focused on perceptual performance. Little is known on the effects of sound cues on visually-guided hand movements. Methodology/Principal Findings We recorded the sound produced by the fingers upon contact as participants grasped stimulus objects which were covered with different materials. Then, in a further session the pre-recorded contact sounds were delivered to participants via headphones before or following the initiation of reach-to-grasp movements towards the stimulus objects. Reach-to-grasp movement kinematics were measured under the following conditions: (i) congruent, in which the presented contact sound and the contact sound elicited by the to-be-grasped stimulus corresponded; (ii) incongruent, in which the presented contact sound was different to that generated by the stimulus upon contact; (iii) control, in which a synthetic sound, not associated with a real event, was presented. Facilitation effects were found for congruent trials; interference effects were found for incongruent trials. In a second experiment, the upper and the lower parts of the stimulus were covered with different materials. The presented sound was always congruent with the material covering either the upper or the lower half of the stimulus. Participants consistently placed their fingers on the half of the stimulus that corresponded to the presented contact sound. Conclusions/Significance Altogether these findings offer a substantial contribution to the current debate about the type of object representations elicited by auditory stimuli and on the multisensory nature of the sensorimotor transformations underlying action.


international conference on haptics perception devices and scenarios | 2008

A Vibrotactile Device for Display of Virtual Ground Materials in Walking

Yon Visell; Jeremy R. Cooperstock; Bruno L. Giordano; Karmen Franinovic; Alvin Law; Stephen McAdams; Kunal Jathal; Federico Fontana

We present a floor tile designed to provide the impression of walking on different ground materials, such as gravel, carpet, or stone. The device uses affordable and commercially available vibrotactile actuators and force sensors, and as such might one day be cost-effectively used in everyday environments. The control software is based on a lumped model of physical interactions between the foot and the ground surface. We have prototyped a measurement scheme for calibrating the device to match real-world ground materials.


PLOS ONE | 2011

Vibration influences haptic perception of surface compliance during walking.

Yon Visell; Bruno L. Giordano; Guillaume Millet; Jeremy R. Cooperstock

Background The haptic perception of ground compliance is used for stable regulation of dynamic posture and the control of locomotion in diverse natural environments. Although rarely investigated in relation to walking, vibrotactile sensory channels are known to be active in the discrimination of material properties of objects and surfaces through touch. This study investigated how the perception of ground surface compliance is altered by plantar vibration feedback. Methodology/Principal Findings Subjects walked in shoes over a rigid floor plate that provided plantar vibration feedback, and responded indicating how compliant it felt, either in subjective magnitude or via pairwise comparisons. In one experiment, the compliance of the floor plate was also varied. Results showed that perceived compliance of the plate increased monotonically with vibration feedback intensity, and depended to a lesser extent on the temporal or frequency distribution of the feedback. When both plate stiffness (inverse compliance) and vibration amplitude were manipulated, the effect persisted, with both factors contributing to compliance perception. A significant influence of vibration was observed even for amplitudes close to psychophysical detection thresholds. Conclusions/Significance These findings reveal that vibrotactile sensory channels are highly salient to the perception of surface compliance, and suggest that correlations between vibrotactile sensory information and motor activity may be of broader significance for the control of human locomotion than has been previously acknowledged.


Human Brain Mapping | 2017

A statistical framework for neuroimaging data analysis based on mutual information estimated via a gaussian copula

Robin A. A. Ince; Bruno L. Giordano; Christoph Kayser; Guillaume A. Rousselet; Joachim Gross; Philippe G. Schyns

We begin by reviewing the statistical framework of information theory as applicable to neuroimaging data analysis. A major factor hindering wider adoption of this framework in neuroimaging is the difficulty of estimating information theoretic quantities in practice. We present a novel estimation technique that combines the statistical theory of copulas with the closed form solution for the entropy of Gaussian variables. This results in a general, computationally efficient, flexible, and robust multivariate statistical framework that provides effect sizes on a common meaningful scale, allows for unified treatment of discrete, continuous, unidimensional and multidimensional variables, and enables direct comparisons of representations from behavioral and brain responses across any recording modality. We validate the use of this estimate as a statistical test within a neuroimaging context, considering both discrete stimulus classes and continuous stimulus features. We also present examples of analyses facilitated by these developments, including application of multivariate analyses to MEG planar magnetic field gradients, and pairwise temporal interactions in evoked EEG responses. We show the benefit of considering the instantaneous temporal derivative together with the raw values of M/EEG signals as a multivariate response, how we can separately quantify modulations of amplitude and direction for vector quantities, and how we can measure the emergence of novel information over time in evoked responses. Open‐source Matlab and Python code implementing the new methods accompanies this article. Hum Brain Mapp 38:1541–1573, 2017.

Collaboration


Dive into the Bruno L. Giordano's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Charalampos Saitis

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elena Rusconi

University College London

View shared research outputs
Top Co-Authors

Avatar

Pascal Belin

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar

Roberto Bresin

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge