Bruno Le Cam
University of Angers
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bruno Le Cam.
PLOS Genetics | 2012
Amandine Cornille; Pierre Gladieux; M.J.M. Smulders; Isabel Roldán-Ruiz; François Laurens; Bruno Le Cam; Anush Nersesyan; Joanne Clavel; Marina V. Olonova; Laurence Feugey; Ivan Gabrielyan; Xiu-Guo Zhang; Maud I. Tenaillon; Tatiana Giraud
The apple is the most common and culturally important fruit crop of temperate areas. The elucidation of its origin and domestication history is therefore of great interest. The wild Central Asian species Malus sieversii has previously been identified as the main contributor to the genome of the cultivated apple (Malus domestica), on the basis of morphological, molecular, and historical evidence. The possible contribution of other wild species present along the Silk Route running from Asia to Western Europe remains a matter of debate, particularly with respect to the contribution of the European wild apple. We used microsatellite markers and an unprecedented large sampling of five Malus species throughout Eurasia (839 accessions from China to Spain) to show that multiple species have contributed to the genetic makeup of domesticated apples. The wild European crabapple M. sylvestris, in particular, was a major secondary contributor. Bidirectional gene flow between the domesticated apple and the European crabapple resulted in the current M. domestica being genetically more closely related to this species than to its Central Asian progenitor, M. sieversii. We found no evidence of a domestication bottleneck or clonal population structure in apples, despite the use of vegetative propagation by grafting. We show that the evolution of domesticated apples occurred over a long time period and involved more than one wild species. Our results support the view that self-incompatibility, a long lifespan, and cultural practices such as selection from open-pollinated seeds have facilitated introgression from wild relatives and the maintenance of genetic variation during domestication. This combination of processes may account for the diversification of several long-lived perennial crops, yielding domestication patterns different from those observed for annual species.
PLOS ONE | 2008
Pierre Gladieux; Xiu-Guo Zhang; Damien Afoufa-Bastien; Rosa-Maria Valdebenito Sanhueza; Mohamed Sbaghi; Bruno Le Cam
Background Venturia inaequalis is an ascomycete fungus responsible for apple scab, a disease that has invaded almost all apple growing regions worldwide, with the corresponding adverse effects on apple production. Monitoring and predicting the effectiveness of intervention strategies require knowledge of the origin, introduction pathways, and population biology of pathogen populations. Analysis of the variation of genetic markers using the inferential framework of population genetics offers the potential to retrieve this information. Methodology/Principal Findings Here, we present a population genetic analysis of microsatellite variation in 1,273 strains of V. inaequalis representing 28 orchard samples from seven regions in five continents. Analysis of molecular variance revealed that most of the variation (88%) was distributed within localities, which is consistent with extensive historical migrations of the fungus among and within regions. Despite this shallow population structure, clustering analyses partitioned the data set into separate groups corresponding roughly to geography, indicating that each region hosts a distinct population of the fungus. Comparison of the levels of variability among populations, along with coalescent analyses of migration models and estimates of genetic distances, was consistent with a scenario in which the fungus emerged in Central Asia, where apple was domesticated, before its introduction into Europe and, more recently, into other continents with the expansion of apple growing. Across the novel range, levels of variability pointed to multiple introductions and all populations displayed signatures of significant post-introduction increases in population size. Most populations exhibited high genotypic diversity and random association of alleles across loci, indicating recombination both in native and introduced areas. Conclusions/Significance Venturia inaequalis is a model of invasive phytopathogenic fungus that has now reached the ultimate stage of the invasion process with a broad geographic distribution and well-established populations displaying high genetic variability, regular sexual reproduction, and demographic expansion.
Molecular Ecology | 2010
Pierre Gladieux; Xiu-Guo Zhang; Isabel Roldán-Ruiz; Valérie Caffier; Thibault Leroy; Martine Devaux; Sabine Van Glabeke; Els Coart; Bruno Le Cam
Evaluating the impact of plant domestication on the population structure of the associated pathogens provides an opportunity to increase our understanding of how and why diseases emerge. Here, we investigated the evolution of the population structure of the apple scab fungus Venturia inaequalis in response to the domestication of its host. Inferences were drawn from multilocus microsatellite data obtained from samples collected on (i) the Central Asian Malus sieversii, the main progenitor of apple, (ii) the European crabapple, Malus sylvestris, a secondary progenitor of apple, and (iii) the cultivated apple, Malus×domestica, in orchards from Europe and Central Asia. Using clustering methods, we identified three distinct populations: (i) a large European population on domesticated and wild apples, (ii) a large Central Asian population on domesticated and wild apples in urban and agricultural areas, and (iii) a more geographically restricted population in M. sieversii forests growing in the eastern mountains of Kazakhstan. Unique allele richness and divergence time estimates supported a host‐tracking co‐evolutionary scenario in which this latter population represents a relict of the ancestral populations from which current populations found in human‐managed habitats were derived. Our analyses indicated that the domestication of apple induced a significant change in the genetic differentiation of populations of V. inaequalis in its centre of origin, but had little impact on its population dynamics and mating system. We discuss how the structure of the apple‐based agrosystem may have restricted changes in the population structure of the fungus in response to the domestication of its host.
Molecular Ecology | 2011
Pierre Gladieux; Fabien Guérin; Tatiana Giraud; Valérie Caffier; Christophe Lemaire; Luciana Parisi; Frédérique Didelot; Bruno Le Cam
Expanding global trade and the domestication of ecosystems have greatly accelerated the rate of emerging infectious fungal diseases, and host‐shift speciation appears to be a major route for disease emergence. There is therefore an increased interest in identifying the factors that drive the evolution of reproductive isolation between populations adapting to different hosts. Here, we used genetic markers and cross‐inoculations to assess the level of gene flow and investigate barriers responsible for reproductive isolation between two sympatric populations of Venturia inaequalis, the fungal pathogen causing apple scab disease, one of the fungal populations causing a recent emerging disease on resistant varieties. Our results showed the maintenance over several years of strong and stable differentiation between the two populations in the same orchards, suggesting ongoing ecological divergence following a host shift. We identified strong selection against immigrants (i.e. host specificity) from different host varieties as the strongest and likely most efficient barrier to gene flow between local and emerging populations. Cross‐variety disease transmission events were indeed rare in the field and cross‐inoculation tests confirmed high host specificity. Because the fungus mates within its host after successful infection and because pathogenicity‐related loci prevent infection of nonhost trees, adaptation to specific hosts may alone maintain both genetic differentiation between and adaptive allelic combinations within sympatric populations parasitizing different apple varieties, thus acting as a ‘magic trait’. Additional intrinsic and extrinsic postzygotic barriers might complete reproductive isolation and explain why the rare migrants and F1 hybrids detected do not lead to pervasive gene flow across years.
Phytopathology | 2004
Fabien Guérin; Bruno Le Cam
ABSTRACT The recent breakdown of Vf, a major resistance gene to apple scab, provided an opportunity to analyze a population genetic process within the matching virulent subpopulation of the fungus Venturia inaequalis. We utilized the amplified fragment length polymorphism technique and allelic variation at four microsatellite loci to assess genetic structure of 133 isolates of V. inaequalis from a single commercial apple orchard sampled from one cultivar carrying the Vf gene (Judeline) and three cultivars devoid of the Vf gene. Both analyses indicated a strong decrease of the genetic diversity among isolates from the Vf cultivar compared with the high level of diversity among isolates from the three other cultivars. This leads to a high genetic differentiation between virVf and avrVf groups (F(ST) > 0.17). Analyses of the genetic distance between AFLP patterns based on the Jaccard index indicate that all virVf isolates could be assigned to a single clonal lineage. These results lead us to conclude that the clonal structure of the population isolated from the Vf cultivar is an example of a founder effect in response to a resistance gene breakdown and it is likely that this event occurred in the orchard during the sampling year.
Theoretical Ecology | 2009
Natalia Sapoukhina; Charles-Eric Durel; Bruno Le Cam
We formulate a spatially realistic population-genetic model for ascertaining the synergetic effect between genetic and spatial composition of the host population on the pathogen spread reinforced by evolutionary processes. We show that spatial arrangement of host genotypes is crucial to the efficacy of host genetic diversification. In particular, the reductive effect of multigenic resistance on the pathogen density can be produced by a random patterning of monogenic resistances. Random patterns can reduce both density and genetic diversity of the pathogen population and delay invasion promoted by sexual recombination. By contrast, patchy distributions diversify pathogen population and, hence, reduce the efficacy of resistance genes. The proposed approach provides theoretical support for studying fast emergence and spread of novel pathogen genotypes carrying multiple virulence genes. It has a practical applicability to design innovative strategies for the most appropriate deployment of plant resistance genes.
Phytopathology | 2002
Bruno Le Cam; Luciana Parisi; Laurence Arene
ABSTRACT Genetic relationships, mating crosses, and host specificity of Venturia inaequalis isolates from Malus spp. and of Spilocaea pyracanthae isolates from Pyracantha spp. were evaluated. Sequence analysis of the complete internal transcribed spacer (ITS) region (ITS1-5.8S to ITS2) revealed a total similarity between these two putative species. ITS restriction fragment length polymorphism carried out with five restriction enzymes on a collection of 28 isolates confirmed a lack of diversity in this region between and within these two populations. Additional isolates from three related species (V. pirina, V. nashicola, and S. eriobotryae) were divided into two distinct monophyletic groups in a phylogenetic tree using ITS sequence comparison. These groups were related to their anamorph (i.e., Spilocaea or Fusicladium). When inoculated on their host of origin, fields isolates caused typical symptoms of scab disease, and a host specificity was demonstrated by cross pathogenicity of isolates from Malus x domestica and Pyracantha spp. Mating on dried leaves in vitro between one isolate of each putative species led to production of numerous perithecia. Ninety-six sporulating monoascosporic progenies were isolated from this cross. Based on these genetic and pathogenic data, we proposed that pathogens responsible for scab on Malus spp. and Pyracantha spp. are considered as two formae speciales belonging to V. inaequalis.
Phytopathology | 2001
Bruno Le Cam; Martine Devaux; Luciana Parisi
ABSTRACT A technique based on the polymerase chain reaction (PCR) was developed for the identification of Venturia nashicola using nucleotide sequence information of the ribosomal DNA region. The complete internal transcribed spacer (ITS) region of V. nashicola strains and phylo-genetically related species was amplified with the two universal ITS1 and ITS4 primers, sequenced, and digested with five restriction enzymes. The alignment of nucleotide sequences and analyses of digestion patterns indicated constant polymorphisms between V. nashicola and related species at nucleotides 126 and 127, which overlapped a TaqI restriction site. An oligonucleotide primer named A126 was designed for identifying this variable region. A primer set (A126 and ITS4) that allowed the amplification of a 391-bp DNA fragment within the ITS region by PCR was specific to V. nashicola when it was checked against fungal genomic DNAs of related fungi. This primer set was a good candidate for a species-specific reagent in a procedure for identification of V. nashicola by PCR.
Evolutionary Applications | 2012
Amandine Lê Van; Pierre Gladieux; Christophe Lemaire; Amandine Cornille; Tatiana Giraud; Charles Eric Durel; Valérie Caffier; Bruno Le Cam
Understanding how pathogens emerge is essential to bring disease‐causing agents under durable human control. Here, we used cross‐pathogenicity tests to investigate the changes in life‐history traits of the fungal pathogen Venturia inaequalis associated with host‐tracking during the domestication of apple and subsequent host‐range expansion on the wild European crabapple (Malus sylvestris). Pathogenicity of 40 isolates collected in wild and domesticated ecosystems was assessed on the domesticated apple, its Central Asian main progenitor (M. sieversii) and M. sylvestris. Isolates from wild habitats in the centre of origin of the crop were not pathogenic on the domesticated apple and less aggressive than other isolates on their host of origin. Isolates from the agro‐ecosystem in Central Asia infected a higher proportion of plants with higher aggressiveness, on both the domesticated host and its progenitor. Isolates from the European crabapple were still able to cause disease on other species but were less aggressive and less frequently virulent on these hosts than their endemic populations. Our results suggest that the domestication of apple was associated with the acquisition of virulence in the pathogen following host‐tracking. The spread of the disease in the agro‐ecosystem would also have been accompanied by an increase in overall pathogenicity.
Infection, Genetics and Evolution | 2014
Valérie Caffier; Pauline Lasserre-Zuber; Michel Giraud; Matthieu Lascostes; René Stievenard; Arnaud Lemarquand; Eric van de Weg; Pascale Expert; Caroline Denancé; Frédérique Didelot; Bruno Le Cam; Charles-Eric Durel
Theoretical approaches predict that host quantitative resistance selects for pathogens with a high level of pathogenicity, leading to erosion of the resistance. This process of erosion has, however, rarely been experimentally demonstrated. To investigate the erosion of apple quantitative resistance to scab disease, we surveyed scab incidence over time in a network of three orchards planted with susceptible and quantitatively resistant apple genotypes. We sampled Venturiainaequalis isolates from two of these orchards at the beginning of the experiment and we tested their quantitative components of pathogenicity (i.e., global disease severity, lesion density, lesion size, latent period) under controlled conditions. The disease severity produced by the isolates on the quantitatively resistant apple genotypes differed between the sites. Our study showed that quantitative resistance may be subject to erosion and even complete breakdown, depending on the site. We observed this evolution over time for apple genotypes that combine two broad-spectrum scab resistance QTLs, F11 and F17, showing a significant synergic effect of this combination in favour of resistance (i.e., favourable epistatic effect). We showed that isolates sampled in the orchard where the resistance was inefficient presented a similar level of pathogenicity on both apple genotypes with quantitative resistance and susceptible genotypes. As a consequence, our results revealed a case where the use of quantitative resistance may result in the emergence of a generalist pathogen population that has extended its pathogenicity range by performing similarly on susceptible and resistant genotypes. This emphasizes the need to develop quantitative resistances conducive to trade-offs within the pathogen populations concerned.