Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bruno Lefebvre is active.

Publication


Featured researches published by Bruno Lefebvre.


Journal of Experimental Medicine | 2005

Intestinal antiinflammatory effect of 5-aminosalicylic acid is dependent on peroxisome proliferator-activated receptor-gamma.

Christel Rousseaux; Bruno Lefebvre; Laurent Dubuquoy; Philippe Lefebvre; Olivier Romano; Johan Auwerx; Daniel Metzger; Walter Wahli; Béatrice Desvergne; Gian Carlo Naccari; Philippe Chavatte; Amaury Farce; Philippe Bulois; Antoine Cortot; Jean-Frederic Colombel; Pierre Desreumaux

5-aminosalicylic acid (5-ASA) is an antiinflammatory drug widely used in the treatment of inflammatory bowel diseases. It is known to inhibit the production of cytokines and inflammatory mediators, but the mechanism underlying the intestinal effects of 5-ASA remains unknown. Based on the common activities of peroxisome proliferator–activated receptor-γ (PPAR-γ) ligands and 5-ASA, we hypothesized that this nuclear receptor mediates 5-ASA therapeutic action. To test this possibility, colitis was induced in heterozygous PPAR-γ+/− mice and their wild-type littermates, which were then treated with 5-ASA. 5-ASA treatment had a beneficial effect on colitis only in wild-type and not in heterozygous mice. In epithelial cells, 5-ASA increased PPAR-γ expression, promoted its translocation from the cytoplasm to the nucleus, and induced a modification of its conformation permitting the recruitment of coactivators and the activation of a peroxisome-proliferator response element–driven gene. Validation of these results was obtained with organ cultures of human colonic biopsies. These data identify PPAR-γ as a target of 5-ASA underlying antiinflammatory effects in the colon.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2005

Regulation of Human ApoA-I by Gemfibrozil and Fenofibrate Through Selective Peroxisome Proliferator-Activated Receptor α Modulation

Hélène Duez; Bruno Lefebvre; Philippe Poulain; Inés Pineda Torra; Frédéric Percevault; Gérald Luc; Jeffrey M. Peters; Frank J. Gonzalez; Romain Gineste; Stéphane Helleboid; Vladimir Dzavik; Jean-Charles Fruchart; Catherine Fievet; Philippe Lefebvre; Bart Staels

Objective—The objective of this trial was to study the effects of fenofibrate (FF) and gemfibrozil (GF), the most commonly used fibrates, on high-density lipoprotein (HDL) and apolipoprotein (apo) A-I. Methods and Results—In a head-to-head double-blind clinical trial, both FF and GF decreased triglycerides and increased HDL cholesterol levels to a similar extent, whereas plasma apoA-I only increased after FF but not GF. Results in human (h) apoA-Itransgenic (hA-ITg) peroxisome proliferator–activated receptor (PPAR) &agr;−/− mice demonstrated that PPAR&agr; mediates the effects of FF and GF on HDL in vivo. Although plasma and hepatic mRNA levels of hapoA-I increased more pronouncedly after FF than GF in hA-ITgPPAR&agr;+/+ mice, both fibrates induced acylCoAoxidase mRNA similarly. FF and GF transactivated PPAR&agr; with similar activity and affinity on a DR-1 PPAR response element, but maximal activation on the hapoA-I DR-2 PPAR response element was significantly lower for GF than for FF. Moreover, GF induced recruitment of the coactivator DRIP205 on the DR-2 site less efficiently than did FF. Conclusion—Both GF and FF exert their effects on HDL through PPAR&agr;. Whereas FF behaves as a full agonist, GF appears to act as a partial agonist due to a differential recruitment of coactivators to the promoter. These observations provide an explanation for the differences in the activity of these fibrates on apoA-I.


Vitamins and Hormones Series | 2005

Transcriptional activities of retinoic acid receptors.

Philippe Lefebvre; Perrine Martin; Sébastien Flajollet; Stéphane Dedieu; Xavier Billaut; Bruno Lefebvre

Vitamin A derivatives plays a crucial role in embryonic development, as demonstrated by the teratogenic effect of either an excess or a deficiency in vitamin A. Retinoid effects extend however beyond embryonic development, and tissue homeostasis, lipid metabolism, cellular differentiation and proliferation are in part controlled through the retinoid signaling pathway. Retinoids are also therapeutically effective in the treatment of skin diseases (acne, psoriasis and photoaging) and of some cancers. Most of these effects are the consequences of retinoic acid receptors activation, which triggers transcriptional events leading either to transcriptional activation or repression of retinoid-controlled genes. Synthetic molecules are able to mimic part of the biological effects of the natural retinoic acid receptors, all-trans retinoic acid. Therefore, retinoic acid receptors are considered as highly valuable therapeutic targets and limiting unwanted secondary effects due to retinoid treatment requires a molecular knowledge of retinoic acid receptors biology. In this review, we will examine experimental evidence which provide a molecular basis for the pleiotropic effects of retinoids, and emphasize the crucial roles of coregulators of retinoic acid receptors, providing a conceptual framework to identify novel therapeutic targets.


Frontiers in Cellular Neuroscience | 2014

A major role for Tau in neuronal DNA and RNA protection in vivo under physiological and hyperthermic conditions

Marie Violet; Lucie Delattre; Meryem Tardivel; Audrey Sultan; Alban Chauderlier; Raphaëlle Caillierez; Smail Talahari; Fabrice Nesslany; Bruno Lefebvre; Eliette Bonnefoy; Luc Buée; Marie-Christine Galas

Nucleic acid protection is a substantial challenge for neurons, which are continuously exposed to oxidative stress in the brain. Neurons require powerful mechanisms to protect DNA and RNA integrity and ensure their functionality and longevity. Beside its well known role in microtubule dynamics, we recently discovered that Tau is also a key nuclear player in the protection of neuronal genomic DNA integrity under reactive oxygen species (ROS)-inducing heat stress (HS) conditions in primary neuronal cultures. In this report, we analyzed the capacity of Tau to protect neuronal DNA integrity in vivo in adult mice under physiological and HS conditions. We designed an in vivo mouse model of hyperthermia/HS to induce a transient increase in ROS production in the brain. Comet and Terminal deoxyribonucleotidyltransferase-mediated deoxyuridine triphosphate nick end labeling (TUNEL) assays demonstrated that Tau protected genomic DNA in adult cortical and hippocampal neurons in vivo under physiological conditions in wild-type (WT) and Tau-deficient (KO-Tau) mice. HS increased DNA breaks in KO-Tau neurons. Notably, KO-Tau hippocampal neurons in the CA1 subfield restored DNA integrity after HS more weakly than the dentate gyrus (DG) neurons. The formation of phosphorylated histone H2AX foci, a double-strand break marker, was observed in KO-Tau neurons only after HS, indicating that Tau deletion did not trigger similar DNA damage under physiological or HS conditions. Moreover, genomic DNA and cytoplasmic and nuclear RNA integrity were altered under HS in hippocampal neurons exhibiting Tau deficiency, which suggests that Tau also modulates RNA metabolism. Our results suggest that Tau alterations lead to a loss of its nucleic acid safeguarding functions and participate in the accumulation of DNA and RNA oxidative damage observed in the Alzheimer’s disease (AD) brain.


Journal of Clinical Investigation | 2010

Proteasomal degradation of retinoid X receptor α reprograms transcriptional activity of PPARγ in obese mice and humans

Bruno Lefebvre; Yacir Benomar; Aurore Guédin; Audrey Langlois; Nathalie Hennuyer; Julie Dumont; Emmanuel Bouchaert; Catherine Dacquet; Luc Pénicaud; Louis Casteilla; François Pattou; Alain Ktorza; Bart Staels; Philippe Lefebvre

Obese patients have chronic, low-grade inflammation that predisposes to type 2 diabetes and results, in part, from dysregulated visceral white adipose tissue (WAT) functions. The specific signaling pathways underlying WAT dysregulation, however, remain unclear. Here we report that the PPARgamma signaling pathway operates differently in the visceral WAT of lean and obese mice. PPARgamma in visceral, but not subcutaneous, WAT from obese mice displayed increased sensitivity to activation by its agonist rosiglitazone. This increased sensitivity correlated with increased expression of the gene encoding the ubiquitin hydrolase/ligase ubiquitin carboxyterminal esterase L1 (UCH-L1) and with increased degradation of the PPARgamma heterodimerization partner retinoid X receptor alpha (RXRalpha), but not RXRbeta, in visceral WAT from obese humans and mice. Interestingly, increased UCH-L1 expression and RXRalpha proteasomal degradation was induced in vitro by conditions mimicking hypoxia, a condition that occurs in obese visceral WAT. Finally, PPARgamma-RXRbeta heterodimers, but not PPARgamma-RXRalpha complexes, were able to efficiently dismiss the transcriptional corepressor silencing mediator for retinoid and thyroid hormone receptors (SMRT) upon agonist binding. Increasing the RXRalpha/RXRbeta ratio resulted in increased PPARgamma responsiveness following agonist stimulation. Thus, the selective proteasomal degradation of RXRalpha initiated by UCH-L1 upregulation modulates the relative affinity of PPARgamma heterodimers for SMRT and their responsiveness to PPARgamma agonists, ultimately activating the PPARgamma-controlled gene network in visceral WAT of obese animals and humans.


Diabetes | 2007

S 26948: a New Specific Peroxisome Proliferator–Activated Receptor γ Modulator With Potent Antidiabetes and Antiatherogenic Effects

Maria del Carmen Carmona; Katie Louche; Bruno Lefebvre; Antoine Pilon; Nathalie Hennuyer; Véronique Audinot-Bouchez; Catherine Fievet; Gérard Torpier; Pierre Formstecher; Pierre Renard; Philippe Lefebvre; Catherine Dacquet; Bart Staels; Louis Casteilla; Luc Pénicaud

OBJECTIVE—Rosiglitazone displays powerful antidiabetes benefits but is associated with increased body weight and adipogenesis. Keeping in mind the concept of selective peroxisome proliferator–activated receptor (PPAR)γ modulator, the aim of this study was to characterize the properties of a new PPARγ ligand, S 26948, with special attention in body-weight gain. RESEARCH DESIGN AND METHODS—We used transient transfection and binding assays to characterized the binding characteristics of S 26948 and GST pull-down experiments to investigate its pattern of coactivator recruitment compared with rosiglitazone. We also assessed its adipogenic capacity in vitro using the 3T3-F442A cell line and its in vivo effects in ob/ob mice (for antidiabetes and antiobesity properties), as well as the homozygous human apolipoprotein E2 knockin mice (E2-KI) (for antiatherogenic capacity). RESULTS—S 26948 displayed pharmacological features of a high selective ligand for PPARγ with low potency in promoting adipocyte differentiation. It also displayed a different coactivator recruitment profile compared with rosiglitazone, being unable to recruit DRIP205 or PPARγ coactivator-1α. In vivo experiments showed that S 26948 was as efficient in ameliorating glucose and lipid homeostasis as rosiglitazone, but it did not increase body and white adipose tissue weights and improved lipid oxidation in liver. In addition, S 26948 represented one of the few molecules of the PPARγ ligand class able to decrease atherosclerotic lesions. CONCLUSIONS—These findings establish S 26948 as a selective PPARγ ligand with distinctive coactivator recruitment and gene expression profile, reduced adipogenic effect, and improved biological responses in vivo.


Molecular Neurodegeneration | 2015

Regulation of human MAPT gene expression

Marie-Laure Caillet-Boudin; Luc Buée; Nicolas Sergeant; Bruno Lefebvre

The number of known pathologies involving deregulated Tau expression/metabolism is increasing. Indeed, in addition to tauopathies, which comprise approximately 30 diseases characterized by neuronal aggregation of hyperphosphorylated Tau in brain neurons, this protein has also been associated with various other pathologies such as cancer, inclusion body myositis, and microdeletion/microduplication syndromes, suggesting its possible function in peripheral tissues. In addition to Tau aggregation, Tau deregulation can occur at the expression and/or splicing levels, as has been clearly demonstrated in some of these pathologies. Here, we aim to review current knowledge regarding the regulation of human MAPT gene expression at the DNA and RNA levels to provide a better understanding of its possible deregulation. Several aspects, including repeated motifs, CpG island/methylation, and haplotypes at the DNA level, as well as the key regions involved in mRNA expression and stability and the splicing patterns of different mRNA isoforms at the RNA level, will be discussed.


Journal of Histochemistry and Cytochemistry | 2010

Evidence for Epithelial–Mesenchymal Transition in Adult Human Pancreatic Exocrine Cells

Marjorie Fanjul; Coralie Sengenès; Ginette Ratovo; Marlène Dufresne; Bruno Lefebvre; Julie Kerr-Conte; Etienne Hollande

It has been shown that adult pancreatic ductal cells can dedifferentiate and act as pancreatic progenitors. Dedifferentiation of epithelial cells is often associated with the epithelial-mesenchymal transition (EMT). In this study, we investigated the occurrence of EMT in adult human exocrine pancreatic cells both in vitro and in vivo. Cells of exocrine fraction isolated from the pancreas of brain-dead donors were first cultured in suspension for eight days. This led to the formation of spheroids, composed of a principal population of cells with duct-like phenotype. When cultivated in tissue culture-treated flasks, spheroid cells exhibited a proliferative capacity and coexpressed epithelial (cytokeratin7 and cytokeratin19) and mesenchymal (vimentin and α-smooth muscle actin) markers as well as marker of progenitor pancreatic cells (pancreatic duodenal homeobox factor-1) and surface markers of mesenchymal stem cells. The switch from E-cadherin to N-cadherin associated with Snail1 expression suggested that these cells underwent EMT. In addition, we showed co-expression of epithelial and mesenchymal markers in ductal cells of one normal adult pancreas and three type 2 diabetic pancreases. Some of the vimentin-positive cells were found to coexpress glucagon or amylase. These results point to the occurrence of EMT, which may take place on dedifferentiation of ductal cells during the regeneration or renewal of human pancreatic tissues.


Molecular and Cellular Biology | 2002

Chromosomal Integration of Retinoic Acid Response Elements Prevents Cooperative Transcriptional Activation by Retinoic Acid Receptor and Retinoid X Receptor

Bruno Lefebvre; Céline Brand; Philippe Lefebvre; Keiko Ozato

ABSTRACT All-trans-retinoic acid receptors (RAR) and 9-cis-retinoic acid receptors (RXR) are nuclear receptors known to cooperatively activate transcription from retinoid-regulated promoters. By comparing the transactivating properties of RAR and RXR in P19 cells using either plasmid or chromosomal reporter genes containing the mRARβ2 gene promoter, we found contrasting patterns of transcriptional regulation in each setting. Cooperativity between RXR and RAR occurred at all times with transiently introduced promoters, but was restricted to a very early stage (<3 h) for chromosomal promoters. This time-dependent loss of cooperativity was specific for chromosomal templates containing two copies of a retinoid-responsive element (RARE) and was not influenced by the spacing between the two RAREs. This loss of cooperativity suggested a delayed acquisition of RAR full transcriptional competence because (i) cooperativity was maintained at RAR ligand subsaturating concentrations, (ii) overexpression of SRC-1 led to loss of cooperativity and even to strong repression of chromosomal templates activity, and (iii) loss of cooperativity was observed when additional cis-acting response elements were activated. Surprisingly, histone deacetylase inhibitors counteracted this loss of cooperativity by repressing partially RAR-mediated activation of chromosomal promoters. Loss of cooperativity was not correlated to local histone hyperacetylation or to alteration of constitutive RNA polymerase II (RNAP) loading at the promoter region. Unexpectedly, RNAP binding to transcribed regions was correlated to the RAR activation state as well as to acetylation levels of histones H3 and H4, suggesting that RAR acts at the mRARβ promoter by triggering the switch from an RNA elongation-incompetent RNAP form towards an RNA elongation-competent RNAP.


Journal of Biological Chemistry | 2006

Distinct roles of the steroid receptor coactivator 1 and of MED1 in retinoid-induced transcription and cellular differentiation.

Sébastien Flajollet; Bruno Lefebvre; Christophe Rachez; Philippe Lefebvre

Retinoic acid receptors (RARs) are the molecular relays of retinoid action on transcription, cellular differentiation and apoptosis. Transcriptional activation of retinoid-regulated promoters requires the dismissal of corepressors and the recruitment of coactivators to promoter-bound RAR. RARs recruit in vitro a plethora of coactivators whose actual contribution to retinoid-induced transcription is poorly characterized in vivo. Embryonal carcinoma P19 cells, which are highly sensitive to retinoids, were depleted from archetypical coactivators by RNAi. SRC1-deficient P19 cells showed severely compromised retinoid-induced responses, in agreement with the supposed role of SRC1 as a RAR coactivator. Unexpectedly, Med1/TRAP220/DRIP205-depleted cells exhibited an exacerbated response to retinoids, both in terms transcriptional responses and of cellular differentiation. Med1 depletion affected TFIIH and cdk9 detection at the prototypical retinoid-regulated RARβ2 promoter, and favored a higher RNA polymerase II detection in transcribed regions of the RARβ2 gene. Furthermore, the nature of the ligand impacted strongly on the ability of RARs to interact with a given coactivator and to activate transcription in intact cells. Thus RAR accomplishes transcriptional activation as a function of the ligand structure, by recruiting regulatory complexes which control distinct molecular events at retinoid-regulated promoters.

Collaboration


Dive into the Bruno Lefebvre's collaboration.

Top Co-Authors

Avatar

Philippe Lefebvre

French Institute of Health and Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eliette Bonnefoy

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge