Bruno Lombard
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bruno Lombard.
Geophysical Journal International | 2008
Bruno Lombard; Joël Piraux; Céline Gélis; Jean Virieux
A method is proposed for accurately describing arbitrary-shaped free boundaries in single-grid finite-difference schemes for elastodynamics, in a time-domain velocity-stress framework. The basic idea is as follows: fictitious values of the solution are built in vacuum, and injected into the numerical integration scheme near boundaries. The most original feature of this method is the way in which these fictitious values are calculated. They are based on boundary conditions and compatibility conditions satisfied by the successive spatial derivatives of the solution, up to a given order that depends on the spatial accuracy of the integration scheme adopted. Since the work is mostly done during the preprocessing step, the extra computational cost is negligible. Stress-free conditions can be designed at any arbitrary order without any numerical instability, as numerically checked. Using 10 grid nodes per minimal S-wavelength with a propagation distance of 50 wavelengths yields highly accurate results. With 5 grid nodes per minimal S-wavelength, the solution is less accurate but still acceptable. A subcell resolution of the boundary inside the Cartesian meshing is obtained, and the spurious diffractions induced by staircase descriptions of boundaries are avoided. Contrary to what occurs with the vacuum method, the quality of the numerical solution obtained with this method is almost independent of the angle between the free boundary and the Cartesian meshing.
Journal of Computational Physics | 2011
Guillaume Chiavassa; Bruno Lombard
This paper deals with the numerical modeling of wave propagation in porous media described by Biots theory. The viscous efforts between the fluid and the elastic skeleton are assumed to be a linear function of the relative velocity, which is valid in the low-frequency range. The coexistence of propagating fast compressional wave and shear wave, and of a diffusive slow compressional wave, makes numerical modeling tricky. To avoid restrictions on the time step, the Biots system is splitted into two parts: the propagative part is discretized by a fourth-order ADER scheme, while the diffusive part is solved analytically. Near the material interfaces, a space-time mesh refinement is implemented to capture the small spatial scales related to the slow compressional wave. The jump conditions along the interfaces are discretized by an immersed interface method. Numerical experiments and comparisons with exact solutions confirm the accuracy of the numerical modeling. The efficiency of the approach is illustrated by simulations of multiple scattering.
Journal of Computational Physics | 2013
Emilie Blanc; Guillaume Chiavassa; Bruno Lombard
A time-domain numerical modeling of Biot poroelastic waves is presented. The viscous dissipation occurring in the pores is described using the dynamic permeability model developed by Johnson-Koplik-Dashen (JKD). Some of the coefficients in the Biot-JKD model are proportional to the square root of the frequency: in the time-domain, these coefficients introduce order 1/2 shifted fractional derivatives involving a convolution product. Based on a diffusive representation, the convolution kernel is replaced by a finite number of memory variables that satisfy local-in-time ordinary differential equations. Thanks to the dispersion relation, the coefficients in the diffusive representation are obtained by performing an optimization procedure in the frequency range of interest. A splitting strategy is then applied numerically: the propagative part of Biot-JKD equations is discretized using a fourth-order ADER scheme on a Cartesian grid, whereas the diffusive part is solved exactly. Comparisons with analytical solutions show the efficiency and the accuracy of this approach.
Mathematical Models and Methods in Applied Sciences | 2012
Stéphane Junca; Bruno Lombard
Propagation of elastic waves is studied in a 1D medium containing two cracks. The latter are modeled by smooth nonlinear jump conditions accounting for the finite, non-null compressibility of real cracks. The evolution equations are written in the form of a system of two nonlinear neutral delay differential equations, leading to a well-posed Cauchy problem. Perturbation analysis indicates that, under periodic excitation, the periodic solutions oscillate around positive mean values, which increase with the forcing level. This typically nonlinear phenomenon offers non-destructive means to evaluate the cracks. Existence, uniqueness and attractivity of periodic solutions is then examined. At some particular values of the ratio between the wave travel time and the period of the source, results are obtained whatever the forcing level. With a much larger set of ratios but at small forcing levels, results are obtained under a Diophantine condition. Lastly, numerical experiments are proposed to illustrate the behavior of the periodic diffracted waves.
Journal of Computational Physics | 2011
Bruno Lombard; Joël Piraux
This paper deals with the numerical modeling of transient mechanical waves in linear viscoelastic solids. Dissipation mechanisms are described using the generalized Zener model. No time convolutions are required thanks to the introduction of memory variables that satisfy local-in-time differential equations. By appropriately choosing the relaxation parameters, it is possible to accurately describe a large range of materials, such as solids with constant quality factors. The evolution equations satisfied by the velocity, the stress, and the memory variables are written in the form of a first-order system of PDEs with a source term. This system is solved by splitting it into two parts: the propagative part is discretized explicitly, using a fourth-order ADER scheme on a Cartesian grid, and the diffusive part is then solved exactly. Jump conditions along the interfaces are discretized by applying an immersed interface method. Numerical experiments of wave propagation in viscoelastic and fluid media show the efficiency of this numerical modeling for dealing with challenging problems, such as multiple scattering configurations.
SIAM Journal on Scientific Computing | 2002
Bruno Lombard; Joël Piraux
The spring-mass conditions are an efficient way to model imperfect contacts between elastic media. These conditions link together the limit values of the elastic stress and of the elastic displacement on both sides of interfaces. To insert these spring-mass conditions in classical finite-difference schemes, we use an interface method, the explicit simplified interface method (ESIM). This insertion is automatic for a wide class of schemes. The interfaces do not need to coincide with the uniform Cartesian grid. The local truncation error analysis and numerical experiments show that the ESIM maintains, with interfaces, properties of the schemes in homogeneous medium.
Waves in Random and Complex Media | 2012
Mathieu Chekroun; Loïc Le Marrec; Bruno Lombard; Joël Piraux
Elastic wave propagation is studied in a heterogeneous two-dimensional medium consisting of an elastic matrix containing randomly distributed circular elastic inclusions. The aim of this study is to determine the effective wavenumbers when the incident wavelength is similar to the radius of the inclusions. A purely numerical methodology is presented, with which the limitations usually associated with low scatterer concentrations can be avoided. The elastodynamic equations are integrated by a fourth-order time-domain numerical scheme. An immersed interface method is used to accurately discretize the interfaces on a Cartesian grid. The effective field is extracted from the simulated data, and signal-processing tools are used to obtain the complex effective wavenumbers. The numerical reference solution thus obtained can be used to check the validity of multiple scattering analytical models. The method is applied to the case of concrete. A parametric study is performed on longitudinal and transverse incident plane waves at various scatterer concentrations. The phase velocities and attenuations determined numerically are compared with predictions obtained with multiple scattering models, such as the Independent Scattering Approximation model, the Waterman–Truell model, and the more recent Conoir–Norris model.
Journal of Computational Physics | 2014
Bruno Lombard; Jean-François Mercier
Acoustic wave propagation in a one-dimensional waveguide connected with Helmholtz resonators is studied numerically. Finite amplitude waves and viscous boundary layers are considered. The model consists of two coupled evolution equations: a nonlinear PDE describing nonlinear acoustic waves, and a linear ODE describing the oscillations in the Helmholtz resonators. The thermal and viscous losses in the tube and in the necks of the resonators are modeled by fractional derivatives. A diffusive representation is followed: the convolution kernels are replaced by a finite number of memory variables that satisfy local ordinary differential equations. A splitting method is then applied to the evolution equations: their propagative part is solved using a standard TVD scheme for hyperbolic equations, whereas their diffusive part is solved exactly. Various strategies are examined to compute the coefficients of the diffusive representation; finally, an optimization method is preferred to the usual quadrature rules. The numerical model is validated by comparisons with exact solutions. The properties of the full nonlinear solutions are investigated numerically. In particular, the existence of acoustic solitary waves is confirmed.
Journal of the Acoustical Society of America | 2013
Emilie Blanc; Guillaume Chiavassa; Bruno Lombard
An explicit finite-difference scheme is presented for solving the two-dimensional Biot equations of poroelasticity across the full range of frequencies. The key difficulty is to discretize the Johnson-Koplik-Dashen (JKD) model which describes the viscous dissipations in the pores. Indeed, the time-domain version of Biot-JKD model involves order 1/2 fractional derivatives which amount to a time convolution product. To avoid storing the past values of the solution, a diffusive representation of fractional derivatives is used: The convolution kernel is replaced by a finite number of memory variables that satisfy local-in-time ordinary differential equations. The coefficients of the diffusive representation follow from an optimization procedure of the dispersion relation. Then, various methods of scientific computing are applied: The propagative part of the equations is discretized using a fourth-order finite-difference scheme, whereas the diffusive part is solved exactly. An immersed interface method is implemented to discretize the geometry on a Cartesian grid, and also to discretize the jump conditions at interfaces. Numerical experiments are proposed in various realistic configurations.
Siam Journal on Applied Mathematics | 2009
Stéphane Junca; Bruno Lombard
The interactions between linear elastic waves and a nonlinear crack with finite compressibility are studied in the one-dimensional context. Numerical studies on a hyperbolic model of contact with sinusoidal forcing have shown that the mean values of the scattered elastic displacements are discontinuous across the crack. The mean dilatation of the crack also increases with the amplitude of the forcing levels. The aim of the present theoretical study is to analyze these nonlinear processes under a larger range of nonlinear jump conditions. For this purpose, the problem is reduced to a nonlinear differential equation. The dependence of the periodic solution on the forcing amplitude is quantified under sinusoidal forcing conditions. Bounds for the mean, maximum, and minimum values of the solution are presented. Lastly, periodic forcing with a null mean value is addressed. In that case, a result about the mean dilatation of the crack is obtained.